Aspects of entanglement offbetween disjoint regions

 in CFT \& Holography

Erik Tonni SISSA

Istituto Nazionale di Fisica Nucleare

2D CFT $\left\{\begin{array}{l}\text { P. Calabrese, J. Cardy and E.T. } \\ \text { C. De Nobili, A. Coser and E.T. } \\ \text { A. Coser, E.T. and P. Calabrese }\end{array}\right.$
[1206.3092] PRL
[1210.5359] JSTAT
[1408.3043] JPA
[1501.04311] JSTAT
[1503.09114] JSTAT
[1508.00811]
AdS $_{4} /$ CFT $_{3} \begin{cases}\text { P. Fonda, L. Giomi, A. Salvio, E.T. } & {[1411.3608]} \\ \text { P. Fonda, D. Seminara, E.T. } & {[\text { to appear] }}\end{cases}$

Physics on the Riviera 2015 Sestri Levante, September 2015

Outline

\rightarrow Introduction \& some motivations
\rightarrow Holographic entanglement entropy (HEE) in $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$
Arbitrary shapes domains with smooth boundaries
\Rightarrow Entanglement in 2D CFT:
\bigcirc Entanglement negativity for adjacent and disjoint intervals
O Partial transpose in the XY spin chain
\bigcirc Partial transpose of the free fermion
\bigcirc Entanglement negativity at finite temperature
\Rightarrow Conclusions \& open issues

Mutual Information \& Entanglement Negativity

\square Ground state $\rho=|\Psi\rangle\langle\Psi|$ and
bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$
Reduced
density matrix

$$
\rho_{A}=\operatorname{Tr}_{B} \rho
$$

Entanglement entropy

Why disjoint intervals?

\square One interval on the infinite line at $T=0$
[Holzhey, Larsen, Wilczek, (1994)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

\square Two intervals A_{1} and $A_{2}: \operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ for small intervals w.r.t. to other characteristc lengths of the system

$$
\operatorname{Tr} \rho_{A}^{n}=c_{n}^{2}\left(\ell_{1} \ell_{2}\right)^{-c / 6(n-1 / n)} \sum_{\left\{k_{j}\right\}}\left(\frac{\ell_{1} \ell_{2}}{n^{2} r^{2}}\right)^{\sum_{j}\left(\Delta_{j}+\bar{\Delta}_{j}\right)}\left\langle\prod_{j=1}^{n} \phi_{k_{j}}\left(e^{2 \pi i j / n}\right)\right\rangle_{\mathbf{C}}^{2}
$$

$\operatorname{Tr} \rho_{A}^{n}$ for disjoint intervals contains all the data of the CFT (conformal dimensions and OPE coefficients)
\square Generalization to higher dimensions [Cardy, (2013)]

Holographic entanglement entropy in AdS(4)

$\square \quad$ Constant time slice in $A d S_{d+1}$ Surfaces γ_{A} s.t. $\partial \gamma_{A}=\partial A$
Find the minimal area surface $\hat{\gamma}_{A}$

$$
S_{A}=\frac{\operatorname{Area}\left(\hat{\gamma}_{\varepsilon}\right)}{4 G_{N}^{(d+1)}}
$$

$\square \quad$ Holographic dual of Wilson loops
[Maldacena, (1998)] [Rey, Yee, (1998)]

\square For arbitrary shapes of ∂A and $A d S_{4}$ we employ a numerical method based on Surface Evolver (by Ken Brakke)

Minimal area surfaces in $A d S(4)$

\square Pathwise connected domains A
(also with non smooth ∂A)

\square Disjoint regions

$$
\left(A=A_{1} \cup A_{2}\right)
$$

HEE in AdS(4). From the disk to the infinite strip

$$
\mathcal{A}_{A}=\frac{P_{A}}{\varepsilon}-F_{A}+o(1) \equiv \frac{P_{A}}{\varepsilon}-\widetilde{F}_{A}
$$

Superellipses:
$\frac{|x|^{n}}{R_{1}^{n}}+\frac{|y|^{n}}{R_{2}^{n}}=1$
squircles: $R_{1}=R_{2}$

HEE in AdS(4) \& Willmore energy

$\square \quad$ Willmore energy of a closed
smooth surface $\Sigma_{g} \subset \mathbb{R}^{3}$ (extrinsic curvature $\widetilde{K}_{\mu \nu}$)

$$
\mathcal{W}\left[\Sigma_{g}\right] \equiv \frac{1}{4} \int_{\Sigma_{g}}(\operatorname{Tr} \widetilde{K})^{2} d \tilde{\mathcal{A}}
$$

\square Minimal area surface $\hat{\gamma}_{A} \subset \mathbb{H}^{3}$ has $\operatorname{Tr} K=0$ Consider $\hat{\gamma}_{A} \subset \mathbb{R}^{3}$
[Babich, Bobenko, (1993)]

$$
F_{A}=\mathcal{W}\left[\hat{\gamma}_{A}\right]=\int_{\hat{\gamma}_{A}} \frac{\left(\tilde{n}^{z}\right)^{2}}{z^{2}} d \tilde{\mathcal{A}}=\frac{1}{2} \mathcal{W}\left[\hat{\gamma}_{A}^{(\mathrm{d})}\right]
$$

[Alexakis, Mazzeo, (2010)]

$\square \quad$ Since $\mathcal{W}\left[\Sigma_{g}\right] \geqslant 4 \pi$ (saturated only by round spheres) [Willmore, (1965)] HEE is maximised by the disk for a given perimeter P_{A}

HEE in asymptotically AdS(4) static spacetimes

[Fonda, Giomi, Seminara, Tonni, to appear]
\square Take $\left.d s^{2}\right|_{t=\text { const }}=g_{\mu \nu} d x^{\mu} d x^{\nu}$ with $g_{\mu \nu}=e^{2 \varphi} \tilde{g}_{\mu \nu}$ and $\varphi=-\log (z)+\ldots$ The metric $\tilde{g}_{\mu \nu}$ is asymptotically flat
$\bigcirc \hat{\gamma}_{A}$ extremal area surface

$$
(\operatorname{Tr} \widetilde{K})^{2}=4\left(\tilde{n}^{\lambda} \partial_{\lambda} \varphi\right)^{2}
$$

$$
F_{A}=\int_{\hat{\gamma}_{A}}\left[\frac{1}{2}(\operatorname{Tr} \widetilde{K})^{2}+\widetilde{\nabla}^{2} \varphi-e^{2 \varphi}-\tilde{n}^{\mu} \tilde{n}^{\nu} \widetilde{\nabla}_{\mu} \widetilde{\nabla}_{\nu} \varphi\right] d \tilde{\mathcal{A}}
$$

The unit vector \tilde{n}^{μ} is normal to the surface $\hat{\gamma}_{A} \subset \mathbb{R}^{3}$
$\square \quad \mathrm{AdS}_{4}$: the previous formula with the Willmore energy is recovered
$\square \quad$ Asymptotically AdS_{4} black holes $\quad d s^{2}=\frac{1}{z^{2}}\left(-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+d \boldsymbol{x}^{2}\right)$

$$
\begin{aligned}
& f(z)=1-M z^{3}+Q^{2} z^{4} \\
& F_{A}=\int_{\hat{\gamma}_{A}} \frac{1}{z^{2}}\left[\left(1+\frac{z f^{\prime}(z)}{2 f(z)}\right)\left(\tilde{n}^{z}\right)^{2}+f(z)-\frac{z f^{\prime}(z)}{2}-1\right] d \tilde{\mathcal{A}}
\end{aligned}
$$

\square Also time dependent backgrounds (e.g. Vaidya) have been studied

HEE in asymptotically AdS(4) black holes. Ellipses

\square Domains A delimited by ellipses

Holographic mutual information in AdS(4). Squircles

$$
I_{A_{1}, A_{2}} \equiv S_{A_{1}}+S_{A_{2}}-S_{A_{1} \cup A_{2}} \equiv \frac{\mathcal{I}_{A_{1}, A_{2}}}{4 G_{N}}
$$

[Fonda, Giomi, Salvio, E.T., (2014)]
\square Beyond a critical distance $\mathcal{I}_{A_{1}, A_{2}}=0$ and the disconnected configuration is the minimal one

Entanglement between disjoint regions: Negativity

$\square \quad \rho=\rho_{A_{1} \cup A_{2}}$ is a mixed state

$\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle$
[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)] [Eisert, (2001)] [Plenio, (2005)] [Vidal, Werner, (2002)]
\square Trace norm $\left\|\rho^{T_{2}}\right\|=\operatorname{Tr}\left|\rho^{T_{2}}\right|=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i} \begin{aligned} & \lambda_{j} \text { eigenvalues of } \rho^{T_{2}} \\ & \operatorname{Tr} \rho^{T_{2}}=1\end{aligned}$

Logarithmic negativity

$$
\mathcal{E}_{A_{2}}=\ln \left\|\rho^{T_{2}}\right\|=\ln \operatorname{Tr}\left|\rho^{T_{2}}\right|
$$

\square Bipartite system $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ in any state ρ

$$
\longrightarrow \quad \mathcal{E}_{1}=\mathcal{E}_{2}
$$

Replica approach to Negativity

\square A parity effect for $\underbrace{\left.\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\right)} \begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} & =\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \\ \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}} & =\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}\end{aligned}$
\square Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

$$
\left.\mathcal{E}=\lim _{n_{e} \rightarrow 1} \log \left[\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}\right]\right) \quad \lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
$$

\square Pure states $\rho=|\Psi\rangle\langle\Psi|$ and bipartite $\operatorname{system}\left(\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$

$$
\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}=\left\{\begin{array}{lll}
\operatorname{Tr} \rho_{2}^{n} & n=n_{o} & \text { odd } \\
\left(\operatorname{Tr} \rho_{2}^{n / 2}\right)^{2} & n=n_{e} & \text { even }
\end{array}\right.
$$

\square Taking $n_{e} \rightarrow 1$ we have

$$
\mathcal{E}=2 \log \operatorname{Tr} \rho_{2}^{1 / 2}
$$

(Renyi entropy $1 / 2$)

2D CFT: Renyi entropies as correlation functions

\square One interval $(N=1)$: the Renyi entropies can be written as
a two point function of twist fields on the sphere [Calabrese, Cardy, (2004)]

\square Twist fields have been largely studied in the 1980s
[Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)]
[Knizhnik, (1987)] [Bershadsky, Radul, (1987)]
\square Integrable field theories [Cardy, Castro-Alvaredo, Doyon, (2008)] [Doyon, (2008)]

2D CFT: Renyi entropies for many disjoint intervals

$\square N$ disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

$$
\begin{aligned}
& \mathbf{- -} v_{N} .
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}=\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{i}\right) \overline{\mathcal{T}}_{n}\left(v_{i}\right)\right\rangle=c_{n}^{N}\left|\frac{\prod_{i<j}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right)}{\prod_{i, j}\left(v_{j}-u_{i}\right)}\right|^{2 \Delta_{n}} \mathcal{F}_{N, n}(\boldsymbol{x})
\end{aligned}
$$

$\square \mathcal{Z}_{N, n}$ partition function of $\mathcal{R}_{N, n}$, a particular Riemann surface of genus $g=(N-1)(n-1)$ obtained through replication

N intervals: free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is $y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \begin{aligned} & g=(N-1)(n-1) \\ & \text { [Enolski, Grava, (2003)] }\end{aligned}$
\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]
Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

\square Free compactified boson $\left(\eta \propto R^{2}\right)$

$$
\mathcal{F}_{N, n}(\boldsymbol{x})=\frac{\Theta\left(\mathbf{0} \mid T_{\eta}\right)}{|\Theta(\mathbf{0} \mid \tau)|^{2}} \quad T_{\eta}=\left(\begin{array}{cc}
\mathrm{i} \eta \mathcal{I} & \mathcal{R} \\
\mathcal{R} & \mathrm{i} \mathcal{I} / \eta
\end{array}\right) \quad \begin{gathered}
\tau=\mathcal{R}+\mathrm{i} \mathcal{I} \\
\text { period matrix } \\
(g \times g)
\end{gathered}
$$

\square Ising model

$$
\mathcal{F}_{N, n}^{\text {Ising }}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{e}}|\Theta[\boldsymbol{e}](\mathbf{0} \mid \tau)|}{2^{g}|\Theta(\mathbf{0} \mid \tau)|}
$$

Nasty n dependence
\square Two intervals case: [Caraglio, Gliozzi, (2008)] [Furukawa, Pasquier, Shiraishi, (2009)]
[Calabrese, Cardy, E.T., (2009), (2011)]
[Fagotti, Calabrese, (2010)] [Alba, Tagliacozzo, Calabrese, (2010), (2011)]

Two disjoint intervals

\square Mutual information in XXZ model
(exact diagonalization) [Furukawa, Pasquier, Shiraishi, (2009)]

Rational interpolation: an example

\square Mutual information in critical Ising chain
(Tree Tensor Network) [Alba, Tagliacozzo, Calabrese, (2010)]

\square Rational interpolation:
[De Nobili, Coser, E.T., (2015)]

$$
W_{(p, q)}^{(n)}(x) \equiv \frac{a_{0}(x)+a_{1}(x) n+\cdots+a_{p}(x) n^{p}}{b_{0}(x)+b_{1}(x) n+\cdots+b_{q}(x) n^{q}}
$$

Method first employed for Riemann theta functions in $2+1$ dimensions [Agón, Headrick, Jafferis, Kasko, (2014)]

Partial transposition: two disjoint intervals

$\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	
${ }_{B}$	u_{1}	A_{1}	$v_{1} B^{u_{2}}$	A_{2}	v_{2}	B	

$\operatorname{Tr} \rho_{A}^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \mathcal{T}_{n}\left(u_{2}\right) \overline{\mathcal{T}}_{n}\left(v_{2}\right)\right\rangle$
$\operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$

	\mathcal{T}_{n}		$\overline{\mathcal{T}}_{n}$	$\overline{\mathcal{T}}_{n}$		\mathcal{T}_{n}	
B	u_{1}	A_{1}	v_{1}	B	u_{2}	A_{2}	v_{2}
		B					

\square The partial transposition exchanges \mathcal{T}_{n} and $\overline{\mathcal{T}}_{n}$
[Calabrese, Cardy, E.T., (2012)]

Partial Transpose in 2D CFT: two disjoint intervals

$\square \operatorname{Tr}\left(\rho_{A_{1} \cup A_{2}}^{T_{2}}\right)^{n}$ is obtained from $\operatorname{Tr} \rho_{A_{1} \cup A_{2}}^{n}$ by exchanging two twist fields

$$
\begin{gathered}
\mathcal{G}_{n}(y)=(1-y)^{\frac{c}{3}\left(n-\frac{1}{n}\right)} \mathcal{F}_{n}\left(\frac{y}{y-1}\right) \\
\mathcal{E}(y)=\lim _{n_{e} \rightarrow 1} \mathcal{G}_{n_{e}}(y)=\lim _{n_{e} \rightarrow 1}\left[\mathcal{F}_{n}\left(\frac{y}{y-1}\right)\right]
\end{gathered}
$$

\square Two adjacent intervals:

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle
$$

Two disjoint intervals: periodic harmonic chains

\square Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains
[Wichterich, Molina-Vilaplana, Bose, (2009)]
[Marcovitch, Retzker, Plenio, Reznik, (2009)]
\square Non compact free boson [Calabrese, Cardy, E.T., (2012)]

$$
R_{n}=\frac{\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}}{\operatorname{Tr} \rho_{A}^{n}} \quad R_{n}=\left[\frac{(1-x)^{\frac{2}{3}\left(n-\frac{1}{n}\right)} \prod_{k=1}^{n-1} F_{\frac{k}{n}}(x) F_{\frac{k}{n}}(1-x)}{\prod_{k=1}^{n-1} \operatorname{Re}\left(F_{\frac{k}{n}}\left(\frac{x}{x-1}\right) \bar{F}_{\frac{k}{n}}\left(\frac{1}{1-x}\right)\right)}\right]^{\frac{1}{2}}
$$

[De Nobili, Coser, E.T., (2015)]

Two disjoint intervals: periodic harmonic chains

\square Analytic continuation for $x \sim 1$ [Calabrese, Cardy, E.T., (2012)]

$$
\mathcal{E}=-\frac{1}{4} \log (1-x)+\log K(x)+\mathrm{cnst}
$$

- Analytic continuation $n_{e} \rightarrow 1$ for $0<x<1$ not known

〇 $\mathcal{E}(x)$ for $x \sim 0$ vanishes faster than any power
\square Numerical extrapolations (rational interpolation method) [De Nobili, Coser, E.T., (2015)]

Two disjoint intervals: Ising model

[Alba, (2013)] [Calabrese, Tagliacozzo, E.T., (2013)]
0 ar

$$
0<y<1
$$

\square Tree tensor network:

[Calabrese, Tagliacozzo, E.T., (2013)]

XY spin chain: two disjoint blocks

\square XY spin chain with periodic b.c.

$$
H_{X Y}=-\frac{1}{2} \sum_{j=1}^{L}\left(\frac{1+\gamma}{2} \sigma_{j}^{x} \sigma_{j+1}^{x}+\frac{1-\gamma}{2} \sigma_{j}^{y} \sigma_{j+1}^{y}+h \sigma_{j}^{z}\right)
$$

Ising model in a transverse field for $\gamma=1, \mathbf{X X}$ spin chain for $\gamma=0$
\square Jordan-Wigner transformation

$$
c_{j}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}-\mathrm{i} \sigma_{j}^{z}}{2} \quad c_{j}^{\dagger}=\left(\prod_{m<j} \sigma_{m}^{z}\right) \frac{\sigma_{j}^{x}+\mathrm{i} \sigma_{j}^{z}}{2}
$$ then introduce Majorana fermions $a_{2 j}=c_{j}+c_{j}^{\dagger}$ and $a_{2 j-1}=\mathrm{i}\left(c_{j}-c_{j}^{\dagger}\right)$.

\square Two disjoint blocks

$$
\begin{array}{lllll}
B_{2} & A_{1} & B_{1} & A_{2} & B_{2}
\end{array}
$$

\rightarrow The string $P_{B_{1}} \equiv \prod_{j \in B_{1}}\left(\mathrm{i} a_{2 j-1} a_{2 j}\right)$ enters in a crucial way [Alba, Tagliacozzo, Calabrese, (2010)] [Igloi, Peschel, (2010)] [Fagotti, Calabrese, (2010)]
\rightarrow Rényi entropies can be written through 4 fermionic Gaussian operators [Fagotti, Calabrese, (2010)]

$$
\operatorname{Tr} \rho_{A}^{n}=\operatorname{Tr}\left(\frac{\rho_{A}^{1}+P_{A_{2}} \rho_{A}^{1} P_{A_{2}}}{2}+\left\langle P_{B_{1}}\right\rangle \frac{\rho_{A}^{B_{1}}-P_{A_{2}} \rho_{A}^{B_{1}} P_{A_{2}}}{2}\right)^{n} \quad \rho_{A}^{B_{1}} \equiv \frac{\operatorname{Tr}_{B}\left(P_{B_{1}}|\Psi\rangle\langle\Psi|\right)}{\left\langle P_{B_{1}}\right\rangle}
$$

XY spin chain: partial transpose of two disjoint blocks

\square Free fermion: $\rho_{A}^{T_{2}}$ is a sum of 2 fermionic Gaussian operators [Eisler, Zimboras, 1502.01369]
\square XY spin chain: $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$ can be written in terms of 4 fermionic Gaussian operators
[Coser, E.T., Calabrese, 1503.09114]

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\operatorname{Tr}\left(\frac{\tilde{\rho}_{A}^{1}+P_{A_{2}} \tilde{\rho}_{A}^{1} P_{A_{2}}}{2}+\left\langle P_{B_{1}}\right\rangle \frac{\tilde{\rho}_{A}^{B_{1}}-P_{A_{2}} \tilde{\rho}_{A}^{B_{1}} P_{A_{2}}}{2 \mathrm{i}}\right)^{n}
$$

\square CFT predictions have been checked for Ising chain and XX chain (e.g. $\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n} / \operatorname{Tr} \rho_{A}^{n}$ for $n=4$)

Free fermion: partial transpose of two disjoint intervals

\square CFT expression:

[Coser, E.T., Calabrese, 1508.00811]

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=c_{n}^{2}\left(\frac{1-x}{\ell_{1} \ell_{2}}\right)^{2 \Delta_{n}} \frac{1}{2^{n / 2-1}} \sum_{\delta} \cos \left[\frac{\pi}{4}\left(1+\sum_{i=1}^{n-1}(-1)^{\sum_{j=i}^{n-1} \delta_{j}}\right)\right]\left|\frac{\Theta[e](\tilde{\tau})}{\Theta(\tilde{\tau})}\right|^{2}$
where $\tilde{\tau} \equiv \tau(x /(x-1))$ and the sum is over the characteristics $\boldsymbol{e}=\binom{\mathbf{0}}{\boldsymbol{\delta}}$
\square Same result for the compact boson at selfdual radius
\square The lattice counterpart of each term in the sum can be found

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

$$
\underset{\text { Transposition }}{\text { Partial }}=\begin{gathered}
\text { exchange } \\
\text { two twist fields }
\end{gathered}
$$

$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling

One interval at finite temperature: a naive approach

\square Logarithmic negativity \mathcal{E} of one interval at finite $T=1 / \beta$
\square A naive approach: compute $\left\langle\mathcal{T}_{n}^{2}(u) \overline{\mathcal{T}}_{n}^{2}(v)\right\rangle_{\beta}$ through the conformal map relating the cylinder to the complex plane

$$
\mathcal{E}_{\text {naive }}=\frac{c}{2} \ln \left(\frac{\beta}{\pi a} \sinh \frac{\pi \ell}{\beta}\right)+2 \ln c_{1 / 2}
$$

Problems:
The Rényi entropy $n=1 / 2$ is not an entanglement measure at finite T
$\mathcal{E}_{\text {naive }}$ is an increasing function of T, linearly divergent at high T
Entanglement should decrease as the system becomes classical

One interval at finite temperature in the infinite line

(connection to the $(j+1)$-th cylinder following the arrows)

Single copy of $\rho_{\beta}^{T_{A}} \Longrightarrow \operatorname{Tr}\left(\rho_{\beta}^{T_{A}}\right)^{n}$

Deformation of the cut along B

A cut remains connecting consecutive copies
\Longrightarrow No factorization for even n
(The double arrow indicates the connection to the $(j+2)$-th copy)

Deforming the cut at zero temperature

Single copy of $(|\psi\rangle\langle\psi|)^{T_{A}} \Longrightarrow \operatorname{Tr}\left[(|\psi\rangle\langle\psi|)^{T_{A}}\right]^{n}$

Deformation of the cut along B

The cut connecting consecutive copies shrinks to a point Only the connection to the $j \pm 2$ copies along A remains \Longrightarrow Factorization for even n

One interval at finite temperature in the infinite line

Two auxiliary twist fields at $\operatorname{Re}(w)= \pm L$, then $L \rightarrow \infty$

$$
\mathcal{E}_{A}=\lim _{L \rightarrow \infty} \lim _{n_{e} \rightarrow 1} \ln \left\langle\mathcal{T}_{n_{e}}(-L) \overline{\mathcal{T}}_{n_{e}}^{2}(-\ell) \mathcal{T}_{n_{e}}^{2}(0) \overline{\mathcal{T}}_{n_{e}}(L)\right\rangle_{\beta}
$$

\square Conformal map the cylinder into the plane $z=e^{2 \pi w / \beta}$

$$
\begin{array}{ll}
\left\langle\mathcal{T}_{n}\left(z_{1}\right) \overline{\mathcal{T}}_{n}^{2}\left(z_{2}\right) \mathcal{T}_{n}^{2}\left(z_{3}\right) \overline{\mathcal{T}}_{n}\left(z_{4}\right)\right\rangle=\frac{c_{n} c_{n}^{(2)}}{z_{14}^{2 \Delta_{n}} z_{23}^{2 \Delta_{n}^{(2)}} \frac{\mathcal{F}_{n}(x)}{x^{\Delta_{n}^{(2)}}}} \begin{array}{ll}
\mathcal{F}_{n}(1)=1 \quad \mathcal{F}_{n}(0)=\frac{C_{\mathcal{T}_{n}}^{2} \overline{\mathcal{T}}_{n}^{2} \overline{\mathcal{T}}_{n}}{c_{n}^{(2)}} \\
x \rightarrow e^{-2 \pi \ell / \beta} \text { when } L \rightarrow \infty & f(x) \equiv \lim _{n_{e} \rightarrow 1} \ln \left[\mathcal{F}_{n_{e}}(x)\right]
\end{array}
\end{array}
$$

$$
\mathcal{E}_{A}=\frac{c}{2} \ln \left[\frac{\beta}{\pi a} \sinh \left(\frac{\pi \ell}{\beta}\right)\right]-\frac{\pi c \ell}{2 \beta}+f\left(e^{-2 \pi \ell / \beta}\right)+2 \ln c_{1 / 2}
$$

$\rightarrow \mathcal{E}_{A}=\mathcal{E}_{B}$
$\rightarrow \mathcal{E}$ depends on the full operator content of the model
\rightarrow large T linear divergence of $\mathcal{E}_{\text {naive }}$ is canceled
\rightarrow semi infinite systems $\operatorname{Re}(w)<0(\mathrm{BCFT})$ have been also studied

Conclusions \& open issues

\square Shape dependence of holographic entanglement entropy in $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$

\square Entanglement for mixed states.
Entanglement negativity in QFT ($1+1 \mathrm{CFTs}$): $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}$ and \mathcal{E}
\rightarrow free boson, Ising model, finite temperature, free fermion
\square Some open issues:
\Rightarrow Analytic continuations
Higher dimensions
Interactions
Negativity in AdS/CFT

