

Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Topological States of Matter

- System with <u>bulk gap</u> but non-trivial at energies below the gap
- global effects and global degrees of freedom:
 - massless edge states, exchange phases, ground-state degeneracies
- not described by symmetry breaking and Landau-Ginzburg approach
- quantum Hall effect is <u>chiral</u> (B field breaks T symmetry)
- quantum spin Hall effect is non-chiral (T symmetric)
- <u>other systems:</u> Chern Insulators, Topological Insulators, Topological Superconductors in d=1,2,3
- Ten-fold classification of non-interacting systems (Band Insulators)

Topological Band Insulators have been observed in d=2 & 3

(Molenkamp et al. '07; Hasan et al. '08)

Quantum Hall Effect

2 dim electron gas at low temperature T ~ 10-100 mK and high magnetic field B ~ 5-10 Tesla

Conductance tensor $J_i = \sigma_{ij} E_j, \ \sigma_{ij} = R_{ij}^{-1}, \ i, j = x, y$

<u>Plateaus:</u> $\sigma_{xx} = 0$, $R_{xx} = 0$ no Ohmic conduction **gap**

High precision & universality

$$\sigma_{xy} = R_{xy}^{-1} = \frac{e^2}{h}\nu, \quad \nu = 1(\pm 10^{-9}), 2, 3, \dots, \frac{1}{3}, \frac{2}{5}(\pm 10^{-6})$$

<u>Uniform density</u> ground state:

$$\rho_o = \frac{eB}{hc}\nu$$

Incompressible fluid

Figure 1. This figure shows a quantum Hall experiment trace. (Source: Goldman *et al.* [2].) The sample geometry is shown in the inset. The various resistances are defined as: Hall resistance $R_{xy} = V_{26}/I_{14}$; longitudinal resistance $R_{xx} = V_{23}/I_{14}$; and non-local resistance $R_{NL} = V_{26}/I_{35}$. Here, V_{jk} denotes the voltage difference between the leads j and k, and I_{jk} denotes the current from lead j to lead k. The experiment was performed at 40 mK.

Laughlin's quantum incompressible fluid

Edge excitations

The edge of the droplet can fluctuate: massless (1+1)-dimensional edge waves

edge ~ Fermi surface: linearize energy $\varepsilon(k) = \frac{v}{R}(k - k_F), \ k \in \mathbb{Z}$

relativistic field theory in 1+1 dimensions with chiral excitations (X.G.Wen)

- <u>conformal field theory of edge excitations</u> (chiral Luttinger liquid)
- CFT modelling describes <u>nonperturbative quantum effects</u>
 - experimental predictions for conduction and tunneling

Effective field theory

Quantum field theory in a nutshell:

- Take a massive phase and fix a maximal energy scale $\,\Lambda\,$
- Guess the low-energy degrees of freedom (fields) and symmetries
- Write the action compatible with them, as a power series in the fields and their derivatives ($1/\Lambda$ expansion). Ex. Landau-Ginzburg:

$$S[J] = \int (\partial_{\mu}\phi)^2 + a\,\phi + b\,\phi^2 + c\,\phi^4 + \dots + \phi J \qquad a, b, c, \dots \text{ to be fitted}$$

- Successful if leading terms are simple: <u>universality</u>
- Topological states need effective theories <u>beyond</u> Landau-Ginzburg, Higgs etc.
 - Topological gauge theories and anomalies

Bulk & boundary

<u>Chern-Simons bulk effective action</u>

$$S[A] = \frac{\nu}{4\pi} \int dx^3 \, \varepsilon^{\mu\nu\rho} A_\mu \partial_\nu A_\rho = \frac{\nu}{4\pi} \int A dA \qquad \text{Laughlin state} \qquad \nu = 1, \frac{1}{3}, \frac{1}{5}, \cdots$$

• no local degrees of freedom: only global effects

$$\rho = \frac{\delta S}{\delta A_0} = \frac{\nu}{2\pi} \mathcal{B}$$
 Density $J^i = \frac{\delta S}{\delta A_i} = \frac{\nu}{2\pi} \varepsilon^{ij} \mathcal{E}^j$ Hall current

- Hall current is topological, i.e. robust
- Introduce Wen's hydrodynamic matter field a_{μ} and current $j^{\mu} = \varepsilon^{\mu\nu\rho} \partial_{\nu} a_{\rho}$

$$S[A] = \int -\frac{1}{4\pi\nu} a da + A da = S_{\text{matt}}[a] + (\text{e.m. coupl.})$$

- Sources of a_{μ} field are anyons (Aharonov-Bohm phases $\frac{\theta}{\pi} = \nu = \frac{1}{3}, \cdots$)
- Gauge invariance requires a boundary action:

 $S_{\text{matt}}[a] \rightarrow S_{\text{matt}}[a] + S_{CFT}[\varphi], \quad \partial_{\mu}\varphi = a_{\mu}|_{b}$ massless edge states

• Bulk topological theory is tantamount to conformal field theory on boundary

Boundary CFT and chiral anomaly

- edge states are chiral fermions/bosons
- chiral anomaly: boundary charge is not conserved
- bulk (B) and boundary (b) compensate:

$$\partial_i J^i + \partial_t \rho = 0, \ \to \ \oint dx J_B + \partial_t Q_b = 0$$

• adiabatic flux insertion (Laughlin)

 $\Phi \rightarrow \Phi + \Phi_0$.

d
$$\Phi_0$$
 ΔQ L ΔQ R

$$Q_R \to Q_R + \Delta Q_b = \nu, \quad \Delta Q_b = \int_{-\infty}^{+\infty} dt \oint dx \; \partial_t \rho_R = \nu \int F_R = \nu \, n \quad \text{chiral anomaly}$$

- Anomaly inflow
 Index theorem: exact quantization of Hall current
- edge chiral anomaly = response of topological bulk to e.m. background
- <u>chiral edge states cannot be gapped</u> + <u>topological phase is stable</u>
- anomalous response extended to other systems in D=1,2,3,.....

Ten-fold classification

		$class \setminus \delta$	Т	С	\mathbf{S}	0	1	2	3	4	5	6	7	space dim. d
QHE		A	0	0	0	\mathbb{Z}	0	(\mathbb{Z})	0	\mathbb{Z}	0	\mathbb{Z}	0] neriod 2
•		AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
		AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	١
Гор. Ins.		BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
		D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
		DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	period 8
		AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	(Bott)
		CII	_	—	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
		С	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
		CI	+	_	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	J

• Study T, C, P symmetries of quadratic fermionic Hamiltonians

(A. Kitaev; Ludwig et al. 09)

- Matches classes of disordered systems/random matrices/Clifford algebras
- Does it extend to interacting systems? YES NO ???

study field theory anomalies

<u>Classification by chiral anomalies: \mathbb{Z} classes</u>

- d = even boundary anomaly, bulk Chern-Simons theory (as in QHE)
- d = odd bulk anomaly, bulk theta term, ex. d=3 U(1) gauge theory (AIII)

$$S[A] = \frac{\theta}{32\pi^2} \int F \wedge F = \frac{\theta}{4\pi^2} \int dx^4 E \cdot B \qquad \text{magneto-electric effect}$$

gravitational anomaly = non-conservation of the thermal current

(A.Ludwig, Furusaki, J. Moore, S. Ryu, Schnyder '08-12)

Non-chiral topological states

Quantum Spin Hall Effect

- take two $\nu = 1$ Hall states of spins
- system is Time-reversal invariant:

 $\mathcal{T}: \psi_{k\uparrow} \to \psi_{-k\downarrow} , \qquad \psi_{k\downarrow} \to -\psi_{-k\uparrow}$

- non-chiral CFT with $U(1)_Q \times U(1)_S$ symmetry
- adding flux pumps spin $\longrightarrow U(1)_S$ anomaly $\Delta Q = \Delta S = \Delta$

(I. Fu, C. Kane, E. Mele 06)

$$\Delta Q = \Delta Q^{\uparrow} + \Delta Q^{\downarrow} = 1 - 1 = 0$$
$$\Delta S = \frac{1}{2} - \left(-\frac{1}{2}\right) = 1$$
$$\Delta S = \Delta Q^{\uparrow} = \nu^{\uparrow}$$

- in Topological Insulators $U(1)_S$ is explicitly broken by spin-orbit interaction

• no currents
$$\sigma_H = \sigma_{sH} = 0$$

• but T symmetry keeps \mathbb{Z}_2 symmetry of $(-1)^{2S}$ (Kramers theorem)

Topological Insulators with T symmetry

	$\mathrm{class}ackslash\delta$	Т	\mathbf{C}	\mathbf{S}	0	1	2	3	4	5	6	7
	A	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
	AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
	AI	+	0	0	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2
	BDI	+	+	1	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2
	D	0	+	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0
	DIII	_	+	1	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$
Fop. Ins. 🗖	➡ AII	_	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
	CII	—	—	1	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	\mathbf{C}	0	_	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
	CI	+	_	1	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

- <u>stability of TI</u> **____** <u>stability of non-chiral edge states</u>
- T symmetry forbids mass term with odd number of free fermions

$$\mathcal{T}: H_{\text{int.}} = m \int \psi_{\uparrow}^{\dagger} \psi_{\downarrow} + h.c. \rightarrow -H_{\text{int.}}$$

 \mathbb{Z}_2 classification (free fermions)

<u>Topological insulators and \mathbb{Z}_2 anomaly</u>

- from Spin QHE to Topological Insulator: $U(1)_S \rightarrow \mathbb{Z}_2$ "spin parity" $(-1)^{2S}$ •
- $U(1)_S$ anomaly reduces to discrete \mathbb{Z}_2 anomaly: •
 - no anomalous currents & actions; study partition function
 - this is not unique and undergoes discrete transformations
- study transformations under half-flux insertions $\frac{\Phi_0}{2}$ (I. Fu, C. Kane, '07) ٠ $Z_{AA} \leftrightarrow Z_{PA}, \quad Z_{AP} \leftrightarrow Z_{PP}, \quad \text{resp. } NS, R, \widetilde{NS}, \widetilde{R}$
- amount to change of Levin-Stern index •

$$(-1)^{2\Delta S} = -1, \qquad 2\Delta S = \frac{\nu^{\uparrow}}{e^*}$$

- Partition function of edge CFTs can be found for general interacting systems •
- Z₂ spin parity anomaly characterizes d=2 Topological Insulators in general interacting theories (A. C., E. Randellini, 13-14)

Conclusion

- Many topological states of matter exist and are actively investigated both theoretically and experimentally
- Effective field theories of massless edge excitations and their anomalies describe universal properties and characterize interacting systems
- <u>Theoretical problems</u> both practical and highly technical:
 - study signatures and observables of topological phases
 - study discrete anomalies (gravitational) in 2d, 3d, K-theory,....

(S. Ryu et al.; G. Moore; E. Witten)

- <u>Technological applications</u> of topologically protected excitations:
 - quantum information and computation
 - conduction without dissipation
 - quantum devices, quantum sensors, etc

<u>Readings</u>

- M. Franz, L. Molenkamp eds., "Topological Insulators", Elsevier (2013)
- X. L. Qi, S. C. Zhang, Rev. Mod. Phys. 83 (2011) 1057
- C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu, arXiv:1505.03535 (to appear in RMP)