Sestri Levante, 17/9/2015

Boost-invariant flow
 of non-conformal plasmas

Giuseppe Policastro

LPT, Ecole Normale Supérieure
Paris
1507.08628 with U. Gürsoy and M. Järvinen

Outline

- Quark-gluon plasma and hydro
- Bjorken flow
- AdS dual of Bjorken flow
- Non-AdS dual of Bjorken flow
- Conclusions

Conventional picture of QGP dynamics

[Heller, Janik, Peschanski]

Early stages: Glauber, CGC, problem of inital conditions
Middle: low-viscosity hydrodynamics
Late: hadronization

Evidence for QGP phase: elliptic flow

$$
v_{2}=\langle\cos (2 \phi)\rangle
$$

$$
\begin{gathered}
\frac{\eta}{s}=\frac{2}{4 \pi} \\
{[\text { arXiv: }|3||.0| 57]}
\end{gathered}
$$

This scenario requires fast thermalization $\sim I f m$
Recent simulations cast some doubt and allow for slower build-up of the flow

Plateau of particle production in the central rapidity region

 [nucl-ex/0210015]

Bjorken's mechanism

assumption: $\quad y=\eta$

$$
\begin{array}{r}
y=\frac{1}{2} \log \left(\frac{E+p}{E-p}\right) ; \eta=\frac{1}{2} \log \left(\frac{x_{0}+x_{1}}{x_{0}-x_{1}}\right) \\
\tau=\sqrt{\left(x_{0}\right)^{2}-\left(x_{1}\right)^{2}}
\end{array}
$$

The boost-invariance (y-independence) of the fluid translates into the η-independence of the hadron distribution

Bjorken flow in CFT

In proper time coordinates $\quad d s^{2}=-d \tau^{2}+\tau^{2} d y^{2}+d x_{\perp}^{2}$
Tracelessness and conservation of $T_{\mu \nu}$

$$
\left.\begin{array}{c}
-T_{\tau \tau}+\frac{1}{\tau^{2}} T_{y y}+2 T_{x x}=0 \\
\tau \frac{d}{d \tau} T_{\tau \tau}+T_{\tau \tau}+\frac{1}{\tau^{2}} T_{y y}=0 \\
\int
\end{array}\right] \begin{gathered}
\\
T_{\mu \nu}=\left(\begin{array}{cccc}
f(\tau) & 0 & 0 & 0 \\
0 & -\tau^{3} \frac{d}{d \tau} f(\tau)-\tau^{2} f(\tau) & 0 & 0 \\
0 & 0 & f(\tau)+\frac{1}{2} \tau \frac{d}{d \tau} f(\tau) & 0 \\
0 & 0 & 0 & f(\tau)+\frac{1}{2} \tau \frac{d}{d \tau} f(\tau)
\end{array}\right)
\end{gathered}
$$

Positive energy $\quad-\frac{4}{\tau} \leq \frac{f^{\prime}}{f} \leq 0 \quad f \sim \tau^{-\alpha}, \quad 0<\alpha<4$

Perfect conformal fluid $\quad T_{\mu \nu}=(\epsilon+p) u_{\mu} u_{\mu}+p \eta_{\mu \nu} \quad p=\frac{\epsilon}{3}$

$$
\alpha=\frac{4}{3} \quad T \sim \tau^{-1 / 3}
$$

Free-streaming fluid $\quad p_{L}=0 \quad \alpha=1$
(weak-coupling phase)

Viscous conformal fluid $\quad T_{\mu \nu}=(\epsilon+p) u_{\mu} u_{\mu}+p \eta_{\mu \nu}+\eta \partial_{\langle\mu} u_{\nu\rangle}$

$$
f(\tau) \sim \frac{1}{\tau^{4 / 3}}\left(1-\frac{2 \eta_{0}}{\tau^{2 / 3}}\right) \quad \eta_{0}=\frac{\eta}{\tau}
$$

Gravity dual of conformal Bjorken flow

Most general Ansatz with the symmetries of the flow in FG gauge

$$
d s^{2}=\frac{d z^{2}}{z^{2}}+\frac{-e^{a(\tau, z)} d \tau^{2}+\tau^{2} e^{b(\tau, z)} d y^{2}+e^{c(\tau, z)} d x_{\perp}^{2}}{z^{2}}
$$

Assuming a scaling form

$$
v=\frac{z}{\tau^{s / 4}}
$$

Einstein's eqs allow a late-time expansion

$$
\begin{aligned}
& a(\tau, z)=a(v)+\mathcal{O}\left(\frac{1}{\tau^{\#}}\right) \\
& b(\tau, z)=b(v)+\mathcal{O}\left(\frac{1}{\tau^{\#}}\right) \\
& c(\tau, z)=c(v)+\mathcal{O}\left(\frac{1}{\tau^{\#}}\right)
\end{aligned}
$$

Late-time equations

$$
\begin{gathered}
v\left(2 a^{\prime}(v) c^{\prime}(v)+a^{\prime}(v) b^{\prime}(v)+2 b^{\prime}(v) c^{\prime}(v)\right)-6 a^{\prime}(v)-6 b^{\prime}(v)-12 c^{\prime}(v)+v c^{\prime}(v)^{2}=0 \\
3 v c^{\prime}(v)^{2}+v b^{\prime}(v)^{2}+2 v b^{\prime \prime}(v)+4 v c^{\prime \prime}(v)-6 b^{\prime}(v)-12 c^{\prime}(v)+2 v b^{\prime}(v) c^{\prime}(v)=0 \\
2 v s b^{\prime \prime}(v)+2 s b^{\prime}(v)+8 a^{\prime}(v)-v s a^{\prime}(v) b^{\prime}(v)-8 b^{\prime}(v)+v s b^{\prime}(v)^{2}+ \\
4 v s c^{\prime \prime}(v)+4 s c^{\prime}(v)-2 v s a^{\prime}(v) c^{\prime}(v)+2 v s c^{\prime}(v)^{2}=0
\end{gathered}
$$

Constraint

$$
(4-3 s) a(v)+(s-4) b(v)+2 s c(v)=0
$$

Basis of solutions

$$
\begin{aligned}
a(v) & =A(v)-2 m(v) \\
b(v) & =A(v)+(2 s-2) m(v) \\
c(v) & =A(v)+(2-s) m(v)
\end{aligned}
$$

$$
\begin{aligned}
A(v)= & \frac{1}{2}\left(\log \left(1+\Delta(s) v^{4}\right)+\log \left(1-\Delta(s) v^{4}\right)\right) \\
m(v)= & \frac{1}{4 \Delta(s)}\left(\log \left(1+\Delta(s) v^{4}\right)-\log \left(1-\Delta(s) v^{4}\right)\right) \\
& A \sim v^{8}, m \sim v^{4}
\end{aligned}
$$

Potentially singular geometry at $\quad v^{4}=\Delta(s)$

$$
\operatorname{Riem}^{2}=\frac{P(v, s)}{\left(1-\Delta(s)^{2} v^{8}\right)^{4}}
$$

$P(v, s) \quad$ cancels the pole for $\quad s=\frac{4}{3}$

The geometry becomes a black hole with a time-dependent horizon

$$
z_{h} \sim z_{0} \tau^{1 / 3}
$$

At higher orders $\quad a(z, \tau)=a_{0}(v)+\frac{1}{\tau^{r}} a_{r}(v)+\frac{1}{\tau^{2 r}} a_{2 r}(v)+\frac{1}{\tau^{\frac{4}{3}}} a_{2}(v)+\ldots$
Regularity implies $\quad r=\frac{2}{3} \quad \frac{\eta}{s}=\frac{1}{4 \pi}$

Deviation from conformality

[arXiv: I 402.6907]

pressure

trace anomaly

The study of deviations from the conformal behavior in the QGP dynamics has started only recently
[Buchel, Heller, Myers][Janik, Plewa, Soltanpanahi, Spalinski] consider the equilibration rate determined by lowest quasi-normal modes in non-conformal theories

$$
\mathrm{N}=2^{*}
$$

Einstein-scalar with

$$
V(\phi)=\cosh (\phi)+\phi^{2}+\phi^{4}+\phi^{6}
$$

Variation of the imaginary part $=$ attenuation rate by factor of ~ 2
[Ishii, Kiritsis, Rosen] consider thermalization after a quench and are mostly interested in the dependence on the quench parameters

Bottom-up non-conformal models [Gursoy, Kiritsis...]

Einstein-dilaton gravity

$$
S=\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{5} x \sqrt{-g}\left(R-\frac{4}{3}(\partial \varphi)^{2}+V(\varphi)\right)-\frac{1}{\kappa^{2}} \int_{\partial} \mathrm{d}^{4} x \sqrt{-\gamma} \mathcal{K}
$$

The potential can be tuned to reproduce the beta-function
For asymptotically AdS UV

$$
\begin{aligned}
V & =V_{0}+v_{1} \lambda+v_{2} \lambda^{2}+\ldots \\
V & \sim \lambda^{Q}(\log \lambda)^{P} \\
Q & >4 / 3 \text { or } Q=4 / 3, P \geq 0
\end{aligned}
$$

Confinement \leadsto finite- T transition between thermal gas and BH

We consider a simple setup with an exponential potential

$$
V=V_{0}\left(1-X^{2}\right) e^{-\frac{8}{3} X \phi} . \quad X<0 \quad \text { (confining for } \quad X<-\frac{1}{2} \text {) }
$$

For $\quad X>-\frac{1}{2} \quad$ analytic BH solution [Chamblin, Reall]

$$
\begin{aligned}
& d s^{2}=e^{2 A(u)}\left(-f(u) d t^{2}+\delta_{i j} d x^{i} d x^{j}\right)+\frac{d u^{2}}{f(u)} \\
& e^{A}=e^{A_{0}} \lambda^{\frac{1}{3 X}} \quad f=1-C_{2} \lambda^{-\frac{4\left(1-x^{2}\right)}{3 X}} \\
& \lambda \equiv e^{\phi}=\left(C_{1}-4 X^{2} \frac{u}{\ell}\right)^{\frac{3}{4 X}}
\end{aligned}
$$

Thermodynamics

$$
\beta=\pi \ell \frac{e^{-A_{0}} C_{2}^{-\frac{1}{4}-x^{2}} 1-X^{2}}{1-X^{2}}
$$

for $x<-\frac{1}{2}$
negative specific heat

$$
-T_{\mu}^{\mu}=E+3 F=3 c_{s} \frac{X^{2}}{1-X^{2}}(T \ell)^{\frac{4\left(1-X^{2}\right)}{1-4 X^{2}}}
$$

Boost-invariant CR flow

Trace condition $\quad-T_{\tau \tau}+\frac{1}{\tau^{2}} T_{y y}+2 T_{x x}=-c T^{\xi} \quad \xi=\frac{4\left(1-X^{2}\right)}{1-4 X^{2}}$

$$
T_{\mu \nu}=\operatorname{diag}\left(\epsilon(\tau),-\tau^{3} \partial_{\tau} \epsilon-\tau^{2} \epsilon, \epsilon+\frac{\tau}{2} \partial_{\tau} \epsilon-\frac{c}{2} T^{\xi}, \epsilon+\frac{\tau}{2} \partial_{\tau} \epsilon-\frac{c}{2} T^{\xi}\right)
$$

Assuming $T=T_{0} \tau^{-\alpha}$ the energy is determined

$$
\epsilon(\tau)=\epsilon_{0} \tau^{-\frac{4}{3}}+\frac{c T_{0}^{\xi}}{4-3 \alpha \xi} \tau^{-\alpha \xi}
$$

If $\alpha \xi<\frac{4}{3} \quad$ the trace anomaly determines the late time behaviour

Ansatz for metric and dilaton

$$
\begin{aligned}
& d s^{2}=z^{-\frac{2}{1-4 X^{2}}}\left(d z^{2}-e^{a(v)} d \tau^{2}+e^{b(v)} \tau^{2} d y^{2}+e^{c(v)} d x_{\perp}^{2}\right) \\
& \lambda=z^{-\frac{3 X}{1-4 X^{2}}} e^{\lambda_{1}(v)} \quad v=\frac{z}{\tau^{s / 4}}
\end{aligned}
$$

Complicated system of equations for late time...
Basis of solutions

$$
\begin{aligned}
a(v) & =A(v)-2\left(1-4 X^{2}\right) m(v)+2 X n(v) \\
b(v) & =A(v)+2\left(s-1+4 X^{2}\right) m(v)+2 X n(v) \\
c(v) & =A(v)-\left(s-2+8 X^{2}\right) m(v)-2 X n(v) \\
\lambda_{1}(v) & =\frac{3}{2} X A(v)+X\left(1-4 X^{2}\right) m(v)+\left(1-X^{2}\right) n(v)
\end{aligned}
$$

The equations decouple

$$
\begin{aligned}
& A(w)=\frac{2}{\chi} w-\frac{1}{2} \log m^{\prime}(w)+\text { const., } \quad n(w)=\kappa m(w)+\text { const. } \\
& w=\log v, \quad \chi=\frac{1-4 X^{2}}{1-X^{2}}
\end{aligned}
$$

The remaining equation for $m(v)$ can be integrated and a closed form can be found for $v(m)$

Using $\quad m$ as radial coordinate yields a simple form for the metric

$$
\begin{aligned}
d s^{2} \simeq & \tau^{-\frac{s}{2\left(1-4 X^{2}\right)}}\left\{\tau^{s / 2}\left(\frac{S \chi}{2}\right)^{2}\left(e^{2 S m}-1\right)^{-\frac{2}{1-X^{2}}} e^{\frac{2 S+2 K}{1-x^{2} m}} d m^{2}\right. \\
& +\left(e^{2 S m}-1\right)^{-\frac{1}{2\left(1-X^{2}\right)}}\left[-e^{\frac{-+4 K}{2\left(1-X^{2}\right)} m} e^{-2 \chi m} d \tau^{2}\right. \\
& \left.\left.+\tau^{2} e^{\frac{5+4 K}{2\left(1-X^{2}\right) m}} e^{2(s-\chi) m} d y^{2}+e^{\frac{s-2 K}{2\left(1-X^{2}\right) m}} e^{(2 \chi-s) m} d x_{\perp}^{2}\right]\right\},
\end{aligned}
$$

S, K constants depending on s, κ

IR regularity at $\quad m \rightarrow \infty$ requires

$$
s=\frac{4}{3}\left(1-4 X^{2}\right), \quad \kappa=0
$$

For these values the metric is that of a BH with a moving horizon

The dual stress-energy tensor can be obtained by holographic renormalization in 5d, or more easily lifting the solution by a generalized dimensional reduction

$$
S=\frac{1}{16 \pi \tilde{G}_{N}} \int d^{d+1} x d^{2 \sigma-d} y \sqrt{-\tilde{g}}(\tilde{R}-2 \Lambda)
$$

Reducing on $\quad \mathbb{R}^{d+1} \times T^{2 \sigma-d} \quad \widetilde{d s}^{2}=e^{-\delta_{1} \phi(x)} d x^{2}+e^{\delta_{2} \phi(x)} d y^{2}$

$$
\delta_{1}=\frac{4 \sqrt{2 \sigma-d}}{\sqrt{3(d-1)(2 \sigma-1)}}, \quad \delta_{2}=\frac{4 \sqrt{d-1}}{\sqrt{3(2 \sigma-1)(2 \sigma-d)}} \quad 2 \sigma-d=\frac{4(d-1)^{2} x^{2}}{3-4(d-1) x^{2}}
$$

The uplifted metric is AAdS

$$
\left\langle T^{\mu \nu}\right\rangle_{2 \sigma}=\frac{2 \sigma l^{2 \sigma-1}}{16 \pi \tilde{G}_{N}} \tilde{g}_{(2 \sigma)}^{\mu \nu}
$$

$T_{\mu \nu} \quad$ consistent with perfect fluid and $\quad \epsilon(\tau) \sim \tau^{-\frac{4}{3}\left(1-X^{2}\right)}$
leading w.r.t. the conformal form

The solution appears singular for $X=-I / 2$ but it can be removed by a rescaling

$$
\begin{gathered}
\ell^{\prime}=\frac{1}{1-4 X^{2}} \quad q=\hat{v} \frac{1}{1-4 X^{2}} \\
d s^{2}=\frac{\tau^{-\frac{8}{3} X^{2}} q^{-2\left(1+4 X^{2}\right)}}{1-q^{4\left(1-X^{2}\right)}} d q^{2}+\tau^{-\frac{2}{3}} q^{-2}\left[-\left(1-q^{4\left(1-X^{2}\right)}\right) d \tau^{2}+\tau^{2} d y^{2}+d x_{\perp}^{2}\right] \\
T_{\mu \nu}=t_{0}\left(1-4 x^{2}\right) \tau^{-\frac{4}{3}\left(1-x^{2}\right)} \operatorname{diag}\left(-\frac{3}{1-4 x^{2}}, \tau^{2}, 1,1\right) \\
\text { Pressureless gas in the limit } \mathrm{X}=-\mathrm{I} / 2
\end{gathered}
$$

In this form it can be continued to $-\mathrm{I}<\mathrm{X}<-\mathrm{I} / 2$
However the solution is unphysical, the temperature grows with time and it corresponds to moving on the small (unstable) BH branch

At $X=-\frac{1}{2}$ it is necessary to take into account the subleading behaviour of the potential

$$
V \sim e^{-8 / 3 X \phi} \phi^{P}
$$

An analytic solution is not available, need to work in an expansion in $1 / \phi$

$$
\begin{aligned}
d s^{2} & =e^{2 A(\phi)}\left(-f(\phi) d t^{2}+\delta_{i j} d x^{i} d x^{j}\right)+e^{2 B(\phi)} \frac{d \phi^{2}}{f(\phi)} \\
e^{2 A(\phi)} & =e^{2 A_{0}} e^{2 \phi /(3 X)} \phi^{P /\left(4 X^{2}\right)} \\
e^{2 B(\phi)} & =e^{2 B_{0}} e^{\frac{8}{3} X \phi} \phi^{-P} \quad+\mathcal{O}\left(\frac{1}{\phi}\right) \\
f(\phi) & =1-e^{a\left(\phi_{h}-\phi\right)}\left(\phi_{h} / \phi\right)^{b} \\
a & =\frac{4\left(1-X^{2}\right)}{3 X}, \quad b=\frac{P\left(1+X^{2}\right)}{2 X^{2}}
\end{aligned}
$$

General solution not available
A working Ansatz is $\quad A(\phi) \rightarrow A(\phi), \quad B(\phi) \rightarrow B(\phi)$

$$
\begin{gathered}
f(\phi) \rightarrow f\left(\phi+a_{1} \log \tau+a_{2} \log \log \tau, 1 / \log \tau\right) \\
a_{1}=X, \quad a_{2}=\frac{3 P}{8 X}
\end{gathered}
$$

Holographic EM tensor

$$
\begin{aligned}
& \epsilon \sim \frac{3 f_{0}}{2\left(1-4 x^{2}\right)} \phi^{\frac{p}{2}\left(1+\frac{1}{x^{2}}\right)} \tau^{\frac{-1}{3}\left(1-4 x^{2}\right)}(\log \tau)^{\frac{p}{2}\left(1-\frac{1}{x^{2}}\right)}, \\
& p \sim \frac{1}{3}\left(1-4 x^{2}\right) \epsilon .
\end{aligned}
$$

In the late-time scaling limit

$$
\epsilon \sim \tau^{-\frac{1}{3}\left(1-4 X^{2}\right)}(\log \tau)^{P}
$$

consistent with thermodynamics

Conclusions

We found an analyitic solution describing the late-time behavior of a class of non-conformal theories

Our results indicate that the deviation from conformality results in a slower relaxation to equilibrium, slightly different than results from quasi-normal modes

The relaxation stops at the critical case $\quad x=-\frac{1}{2}$ separating confining from non-confining theories, beyond this a new Ansatz may be needed, perhaps describing relaxation towards the critical temperature

Extensions

- Higher-order terms and viscosity
- Early-time dynamics
- Corrections to boost-invariance and isotropy
- Models with three potentials (confining, analytic BH solutions known but with T-dependent parameters
- Matching with AdS UV
- Relation with resummation of hydrodynamic series [Heller, Janik, Witaszczyk]

Thank you

