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Outline

A quick overview of black hole paradoxes:

the information and entropy problems
the Strominger-Vafa “solution”

The dual CFT side:

microstates of the D1-D5 CFT

Supergravity construction of D1-D5-P microstates:
superstrata

Holography:
deriving geometry from the CFT
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Black hole paradoxes The information paradox

The information paradox

Hawking: classical horizons coupled to quantum matter emit
particle pairs in an entangled state

When the black hole has completely evaporated the outside
radiation is entangled with nothing
⇒ one cannot associate to it a definite quantum state

Mathur, AMPS: to restore unitarity one has to either

introduce non-localities (ER=EPR, Papadodimas-Raju)
modify the classical horizon (fuzzballs, firewalls)
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The information paradox

Hawking: classical horizons coupled to quantum matter emit
particle pairs in an entangled state

When the black hole has completely evaporated the outside
radiation is entangled with nothing
⇒ one cannot associate to it a definite quantum state

Mathur, AMPS: to restore unitarity one has to either

assume remnants
introduce non-localities (ER=EPR, Papadodimas-Raju)
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Black hole paradoxes The entropy problem

The entropy problem

Only non-susy black holes evaporate

One aspect of the information paradox survives in the susy limit:

an entropy can be associated to the black hole

SBH =
AH

4 G

SBH can be non-zero also for BPS black holes
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The entropy problem

Only non-susy black holes evaporate

One aspect of the information paradox survives in the susy limit:

an entropy can be associated to the black hole

SBH =
AH

4 G
?
= log(#microstates)

SBH can be non-zero also for BPS black holes
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Black hole paradoxes The entropy problem

Strominger-Vafa counting

In string theory microstates can be counted by representing black
holes as bound states of N D-branes (N � 1)
Example:

D1-D5-P on R4,1 × S1 × T 4

At small gravitational coupling (gs → 0) the bound state of
D-branes is described by a CFT
Microstates of the CFT can be counted

log(#microstates) = 2π
√

n1n5np = SBH

What happens to the microstates at finite gravitational coupling
(gsN � 1)?
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Black hole paradoxes The entropy problem

Microstate geometries

For large gsN, D-branes backreact on spacetime
For particular microstates (coherent states), the backreaction is
well described by supergravity

gsN ∼ 0

D-brane microstate

→

gsN � 1

microstate geometry

R4,1 × S1

AdS3 × S3

← r ∼ RHor

no horizon!
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Holography The D1-D5 CFT

The D1-D5 CFT

At a special point in moduli space, the low energy limit of the
D1-D5 system is described by the

(T 4)N/SN orbifold with (4,4) susy
where N = n1n5

States carrying D1-D5 charges are RR ground states

...

w1w 2 i

si1 2

∑
i Ni wi = N

Ni # strands of winding wi
and “spin” si

⇔
∏

i (|si〉wi )
Ni
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Holography The D1-D5 CFT

Examples

The simplest D1-D5 state is the maximally rotating one

|+,+〉N1 ↔ ...

N

Spectral flow maps this state into the SL(2,C) invariant vacuum
The dual geometry is (in appropriate coordinates)

AdS3 × S3

Adding “strands” with different lengths and spins produces on the
gravity side deformations of AdS3 × S3

(Lunin, Mathur; Kanitschieder, Skenderis, Taylor)
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Holography A class of D1-D5-P microstates

Adding momentum

The D1-D5 black hole has vanishing horizon area in classical
supergravity⇒ need to add momentum

Momentum is carried by left-moving excitations on the CFT

For example, one can act with modes of the R-current

N1

J+
-1( )

m1

k1

N

k2

J+
-1( )

m2

k1m1 2 2

Note:

J+
−1|+,+〉1 = 0

(J+
−1)m|0,0〉k = 0 for m > k

If Nki mi � 1 the states backreact semi-classically on spacetime

How to construct the dual geometries?
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Supergravity

General susy ansatz

The most general geometry preserving the same supercharges as
the D1-D5-P black hole and T 4-invariant is

ds2
6 = − 2√

P
(dv +β)

(
du +ω+

F
2

(dv +β)
)

+
√
Pds2

4 , P = Z1Z2 − Z 2
4

where v = t+y√
2
, u = t−y√

2

It is encoded by

0) ds2
4 (4D euclidean metric), β (1-form in 4D)

1) Z1 , Z2 , Z4 (0-forms)

2) ω (1-form in 4D), F (0-form)

Susy implies that u is an isometry. Everything depends on v , x i
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1) Z1 , Z2 , Z4 (0-forms) ⇒ linear and homogeneous eqs.

2) ω (1-form in 4D), F (0-form)

Susy implies that u is an isometry. Everything depends on v , x i

10 / 14



Supergravity Superstrata

A class of D1-D5-P geometries

Remember we look for the geometry dual to

N1

J+
-1( )

m1

k1

N

k2

J+
-1( )

m2

k1m1 2 2

Strands of type (J+
−1)m|0,0〉k contribute linearly to Z4

Z4 =
∑
k ,m

bk ,m Z (k ,m)
4 with b2

k ,m ∝ Nk ,m

Regularity implies that Z1 has terms quadratic in bk ,m
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Geometry from CFT 1-point functions

Holographic 1-point functions

Can we test the connection between geometries and states?
Terms of order r−2−d in the asymptotic expansion of the geometry
are related to vevs of dimension d operators in the microstate
The vevs of chiral primary operators (and their descendants) in
1/4 and 1/8 BPS states are protected
Examples: operators of dimension 1

O: O |+ +〉k = |00〉k ⇒ Z4 ∼ 〈O 〉Y 1

r3

Σ2: Σ2 (|+ +〉k1 ⊗ |+ +〉k2 ) = |+ +〉k1+k2 ⇒ Z1 ∼ 〈Σ2〉Y 1

r3

(Y 1 : S3 scalar spherical harmonic of order 1)
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Geometry from CFT 1-point functions

A D1-D5-P example

Consider the state: |s〉 =

N1 N2N0

J+
-1

b2
1 ∝ N1

b2
2 ∝ N2

O = ⇒ 〈s|O|s〉 ∝ b1 ↔ Z4 ∝ b1

Σ2 ⊗ = ⇒ 〈s|Σ2|s〉 ∝ eiv b1b2 ↔ Z1 ∝ eiv b1b2

Gravity and CFT match (including numerical coefficients)

The CFT implies the regularity of spacetime
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Summary and Outlook

Summary
We have constructed a family of regular and horizonless D1-D5-P
geometries

We have identified their CFT dual states

We have checked the gravity-CFT map by computing 1-point
functions (and entanglement entropy)

Outlook
The states we have are still insufficient to produce an entropy
which scales like (n1n5np)1/2 (fractional modes are missing)

How well can one resolve typical states in supergravity?
(need to know the vevs of operators of high enough dimension)

What can one say about non-BPS microstates?
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