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Figure 1: Description of QGP formation in heavy ion collisions. The kinematic
landscape is defined by τ =

√

x2
0 − x2

1 ; η = 1
2 log x0+x1

x0−x1
; xT ={x2, x3} , where the

coordinates along the light-cone are x0 ± x1, the transverse ones are {x2, x3} and
τ is the proper time, η the “space-time rapidity”.

leads in general to a high η/s. Indeed, the mean free path induced by the
gauge theory should be small (hence the coupling strong) in order to damp
the near-by force transversal to the flow, measuring the shear viscosity.

It is thus interesting to use our modern (but still largely in progress)
knowledge of non perturbative methods in quantum field theory to fill the
gap between the macroscopic and microscopic descriptions of the quark-gluon
plasma produced in heavy-ion collisions. Lattice gauge theory methods are
very useful to analyze the static properties of the quark-gluon plasma, but
there are still powerless to describe the plasma in collision. Hence we are led
to rely upon the new tools offered by the Gauge/Gravity correspondence and
in particular the one which is the most studied and well-known namely the
AdS/CFT duality [7] between the N = 4 supersymmetric Yang-Mills theory
and the type IIB superstring in the large Nc approximation. The features of
the gauge theory on the (physical) Minkowski space in 3 + 1 dimensions at
strong coupling are in one-to-one relation with corresponding ones in the bulk
of the target space of the 10-d string and in particular in the 5-dimensional
metric of the AdS space, the boundary of which can be identified with the
4-dimensional Minkowski space.

One should be aware when using the AdS/CFT tools that there does
not yet exist a gravity dual construction for QCD. However, the nice fea-
ture of the quark-gluon plasma problems is that it is a deconfined phase
of QCD, characterized by collective degrees of freedom and thus one may
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[Heller, Janik, Peschanski]

Conventional picture of QGP dynamics

Early stages: Glauber, CGC, problem of inital conditions

Middle: low-viscosity hydrodynamics  

Late: hadronization   
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Evidence for QGP phase: elliptic flow
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FIG. 3: (Color online) Differential elliptic flow v2(pT ) for pions, kaons and protons in 2.76ATeV Pb+Pb collisions. Experimental
data are from ALICE [29]. Theoretical curves are from VISHNU. See text for details.

uct method [29]. With (η/s)QGP =0.16,2 VISHNU nicely
describes the identified hadron elliptic flow data up to
2GeV for all shown centralities. The value of (η/s)QGP

used here is slightly below the value 0.20−0.24 used in
our earlier work [19], which was obtained from fitting
the integrated and differential elliptic flow v2{4} for all
charged hadrons. The scalar product method flow mea-
surements v2{SP} use two particle correlations, which
are known to over-estimate the mean flow signal due to
non-flow contributions and fluctuations. In contrast, the
four particle cumulant method v2{4} minimizes non-flow
contributions and receives a negative contribution from
flow fluctuations, leading to somewhat lower flow values.
Due to its larger flow signal compared to v2{4}, v2{SP}
therefore leads to a slightly lower value of the extracted
QGP shear viscosity (η/s)QGP.3

2 In the proceedings [20] we used a value of (η/s)QGP =0.20, yield-
ing v2(pT ) values for pions, kaons and protons that were slightly
lower than the preliminary elliptic flow data reported by AL-
ICE at the Quark Matter 2011 conference [34]. After reduc-
ing (η/s)QGP from 0.20 to 0.16, the calculated v2(pT ) for these
identified hadrons increased by O(5%), providing an improved
description of the experimental data.

3 The reader may correctly object that one should not compare
different flow measures in the experimental data and theoretical
calculations. Unfortunately, it is difficult to eliminate the effect

The authors of [35] previously predicted the elliptic
flow for pions, kaons and protons at the LHC using a pure
(2+1)-d viscous hydrodynamic calculation that employed
the fluid dynamic code VISH2+1 to describe the evolu-
tion of both the QGP and hadronic phases. With their
choice of parameters, an MC-KLN initialization, a con-
stant value of η/s=0.20, and a decoupling temperature
Tdec=120MeV, they nicely predicted the later shown
ALICE data [34] for v2(pT ) below pT < 1.5GeV for pions
and kaons for mid-central to mid-peripheral centralities
bins. However, since the calculation assumed chemical
freeze-out at Tchem=165MeV and ignored B−B̄ annihi-
lation below Tchem, they over-predicted the proton yields.
The shapes of the proton pT spectra were predicted rea-
sonably well over most of the measured centrality range,
except for the most central collisions where the predicted

of flow fluctuations from experimental flow measurements, and
including them on the theoretical side requires an event-by-event
evolution approach which is prohibitively expensive with the
VISHNU hybrid code. We therefore emphasize that the analysis
presented here does not aim at a precision extraction of (η/s)QGP

– this would indeed require an event-by-event approach. The
goal here is rather to show that we can get a consistent overall
description of all soft-hadron observables with a common set of
parameters, and use this to make predictions for so far unpub-
lished measurements of additional hadron species.

⌘

s
=

2

4⇡

[arXiv:1311.0157]

v2 = hcos(2�)i

Recent simulations cast some doubt and allow for 	


slower build-up of the flow

This scenario requires fast thermalization ~ 1 fm
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Plateau of particle 	


production 	


in the central 	


rapidity region

was modified to include this effect. This refinement
was already in place in Ref. [2]. Second, for very high
occupancies, the common mode noise correction in the
octagon detector (|η| < 3.2) becomes slightly inaccurate.
A comparison of the data from the octagon detector with
those from the more highly segmented vertex detector
was used to determine a correction factor for this effect
as a function of η, centrality, and beam energy. This
correction was only required near mid-rapidity (|η| < 1.5)
for the central data and it was less than 4% everywhere
even in the 0–6% centrality bin of the 200 GeV data. For
the 6–15% bin of the 200 GeV data and the 0–6% bin
of the 130 GeV data, this correction was less than 1%
everywhere. For the more peripheral high energy bins
and for the 19.6 GeV data, no correction was required.

The centrality of the collision is characterized by the
average number of nucleon participants ⟨Npart⟩. For the
130 and 200 GeV data sets, this was estimated from
the data using two sets of 16 paddle counters covering
3 < |η| < 4.5 forward and backward of the interaction
point. The truncated mean of the signals in each set
of detectors is proportional to the total charged mul-
tiplicity in this region of pseudorapidity. In order to
extract ⟨Npart⟩ for a given fraction of the cross-section,
we rely on the fact that the multiplicity in the paddles
increases monotonically with centrality, but we do not
assume that the number of participants is proportional
to the multiplicity. The monotonic relationship between
the truncated paddle mean and Npart was verified us-
ing the neutral spectator energy measured in the for-
ward hadronic calorimeters. For peripheral events, the
dominant uncertainty in ⟨Npart⟩ is given by the trigger
efficiency uncertainty. Using several methods, based on
the HIJING model [6], we have estimated our minimum-
bias trigger efficiency for events with a vertex zvtx near
the nominal interaction point to be ϵ = 97 ± 3%. The
final systematic errors on ⟨Npart⟩, ranging from 3–6%,
are tabulated in Ref. [7] where this method was outlined
in more detail.

At the lowest RHIC energy,
√

s
NN

= 19.6 GeV, the
much lower beam rapidity (ybeam ∼ 3) precludes us-
ing the same method of analyzing the trigger counters
(3 < |η| < 4.5). Instead, we construct a different quan-
tity, “EOCT”, which is approximately proportional to
the multiplicity: the path-length corrected sum of the
energy deposited in the octagon (silicon) detector(|η| <
3.2). In the first step, both HIJING simulations and
simple Glauber model [8,9] Monte Carlo simulations are
used to estimate the fraction of the total cross-section (ϵ)
in the triggered sample, as well as to estimate the system-
atic error. For consistency with the higher energy results,
the low Npart tail is assumed to be distributed as in
HIJING, leading to ϵ = 52 ± 4%. Once ϵ is determined,
cuts are made in EOCT in a similar way as with the
paddle signal to extract ⟨Npart⟩ for a chosen fraction of
the total cross-section [7]. As with the paddle signal, we
only assume that EOCT is monotonic with ⟨Npart⟩, not
that it is proportional to it. The ⟨Npart⟩ values and the

estimated systematic uncertainty for various centrality
bins in the 19.6 GeV data are given in Table I.
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FIG. 1. The charged particle pseudorapidity distribution,
dNch/dη, measured for Au + Au at

√
s

NN
= 200, 130, and

19.6 GeV for the specified centrality bins. These bins range
from 0–6% central to 45–55% in the case of the higher energy
data and 0–6% to 35–45% for the 19.6 GeV data. The
statistical errors are negligible. The typical systematic errors
(90% C.L.) are shown as bands for selected centrality bins.

Figure 1 shows the charged particle pseudorapidity
distributions (dNch/dη) measured at

√
s

NN
= 200, 130,

and 19.6 GeV for different centrality bins for −5.4 <
η < 5.4. The statistical errors are comparable to the size

[nucl-ex/0210015]
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Figure 2: In-Out cascade. The “piece of fluid” with space-time rapidity
η gives rise to hadrons at rapidity y ≡ η, after crossing the “freeze-out”
hyperbola at fixed proper-time τ.

Taking (1) as the starting point and using the perfect fluid hydrodynam-
ics, Bjorken developped in his seminal paper [4] a suggestive (and very useful
in many applications) physical picture of the central rapidity region of highly
relativistic collisions of heavy ions. In this picture the condition (1) leads to
a boost-invariant geometry of the expanding fluid and thus to the central
plateau in the distribution of particles.

Let us introduce the relativistic hydrodynamic equations in light-cone
variables. We consider the “perfect fluid” approximation for which the
energy-momentum tensor is

T µν = (ϵ + p)uµuν − pηµν (4)

where ϵ is the energy density, p is the pressure and uµ is the 4-velocity. We
assume that the energy density and pressure are related by the equation of
state:

ϵ = gp (5)

5

Bjorken’s mechanism

assumption: 

expect to get useful information from AdS/CFT duality. This has been al-
ready proved when describing static geometries by an evaluation of η/s [8].
The subject of the present lectures is the investigation of the Gauge/Gravity
correspondence, in particular the AdS/CFT duality, in a dynamical setting
corresponding to a collision.

2 Relativistic Hydrodynamics and Bjorken Flow

On theoretical grounds, there are quite appealing features for applying hy-
drodynamic concepts to high-energy heavy-ion reactions. Such concepts have
been already introduced some time ago [5, 4] and find a plausible realization
nowadays. The fact that a rather dense interacting medium is created in the
first stage of the collision allows one to admit that the individual partonic or
hadronic degrees of freedom are not relevant during the early evolution of the
medium and justifies its treatment as a fluid. For the same reason local equi-
librium is a plausible assumption. Moreover, the high quantum occupation
numbers allow one to use a classical picture and to assume that the “pieces
of fluid” may follow quasi-classical trajectories in space-time, expressed as
an in-out cascade [9] with straight-line trajectories starting at the origin (see
Fig. 2), with

y = η (1)

where

y =
1

2
log

(

E + p

E − p

)

; η =
1

2
log

(

x0 + x1

x0 − x1

)

(2)

are respectively the rapidity and “space-time rapidity” of the piece of the
fluid2.

Note that (1) can be rewritten in the form

2y = log u+ − log u− = log x+ − log x− (3)

where u± = e±y are the light-cone components of the fluid (four-)velocity
and x± = x0 ± x1 are the light-cone kinematical variables.

2We keep the conventional notation η, not to be confused with viscosity. The difference
is clear enough to avoid mistakes.
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The boost-invariance (y-independence) of the 	


fluid translates into the      - independence of the 	


hadron distribution 

⌘

⌧ =
p

(x0)2 � (x1)2
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Bjorken flow in CFT

In proper time coordinates ds

2 = �d⌧

2 + ⌧

2
dy

2 + dx

2
?

fect fluid hydrodynamics in the 4D gauge theory. We close the paper with
conclusions and outlook.

2 Bjorken hydrodynamics

As is well known, a model of the central rapidity region of heavy-ion reactions
based on hydrodynamics was pioneered in [3] and involved the assumption
of boost invariance. In this paper we study the dynamics of strongly inter-
acting gauge-theory matter assuming boost invariance. Let us review now
the picture which will serve as a basis of our theoretical investigation.

We will be interested in the spacetime evolution of the energy-momentum
tensor Tµν of the gauge-theory matter. It is convenient to introduce proper-
time (τ) and rapidity (y) coordinates in the longitudinal position plane:

x0 = τ cosh y x1 = τ sinh y . (1)

In these coordinates the Minkowski metric has the form

ds2 = −dτ 2 + τ 2dy2 + dx2
⊥ . (2)

Assuming for simplicity, y → −y symmetry and translational and rotational
symmetry in the transverse plane, the energy-momentum tensor has only
three nonzero components Tττ , Tyy and Tx2x2

= Tx3x3
≡ Txx, which depend

only on τ . Since we are dealing with a conformal gauge theory, Tµν is neces-
sarily traceless

− Tττ +
1

τ 2
Tyy + 2Txx = 0 . (3)

Energy-momentum conservation DνT µν = 0 gives a further relation between
the components:

τ
d

dτ
Tττ + Tττ +

1

τ 2
Tyy = 0 (4)

So using relations (3)-(4), all components of the energy momentum tensor
can be expressed in terms of a single function f(τ):

Tµν =

⎛

⎜

⎜

⎝

f(τ) 0 0 0
0 −τ 3 d

dτ f(τ)−τ 2f(τ) 0 0
0 0 f(τ)+ 1

2τ
d
dτ f(τ) 0

0 0 0 f(τ)+ 1
2τ

d
dτ f(τ)

⎞

⎟

⎟

⎠

(5)
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Perfect conformal fluid Tµ⌫ = (✏+ p)uµuµ + p⌘µ⌫ p =
✏

3

↵ =
4

3
T ⇠ ⌧�1/3

Free-streaming fluid pL = 0 ↵ = 1

�4

⌧
 f 0

f
 0Positive energy f ⇠ ⌧�↵ , 0 < ↵ < 4

(weak-coupling phase)

Viscous conformal fluid Tµ⌫ = (✏+ p)uµuµ + p ⌘µ⌫ + ⌘ @hµu⌫i

f(⌧) ⇠ 1

⌧4/3
(1� 2⌘0

⌧2/3
) ⌘0 =

⌘

⌧
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Gravity dual of conformal Bjorken flow [Janik, Peschanski]

Most general Ansatz with the symmetries of the flow in FG gauge 

ds

2 =
dz

2

z

2
+

�e

a(⌧,z)
d⌧

2 + ⌧

2
e

b(⌧,z)
dy

2 + e

c(⌧,z)
dx

2
?

z

2

Assuming a scaling form v =
z

⌧ s/4

Einstein’s eqs allow a late-time expansion 

The three coefficient functions a(τ, z), b(τ, z) and c(τ, z) must start off at
small z as z4 according to (14)-(15) and (5). In this paper we will restrict
ourselves to the energy density behaving like

f(τ) =
1

τ s
(28)

for 0 < s < 4 and we concentrate on the resulting leading behaviour for
τ → ∞. Let us emphasize that there is a lot of physical content also in the
subleading behaviour and this problem certainly deserves further study.

First we solve the Einstein equations

Rµν −
1

2
gµνR − 6 gµν = 0 (29)

order by order in z as in (14), starting from (28) and following the holographic
renormalization procedure. We have implemented the iterative procedure
using Maple [24] to obtain exact coefficients of the power series expansions
like

a(τ, z) =
N

∑

n=0

an(τ)z4+2n (30)

to some order N . This method calls for comments.
On the one hand this form is difficult to use in order to analyze possible

singularities in the bulk since these occur at the edge of the radius of con-
vergence and it is difficult to disentangle unambigously whether the effect
comes from a finite radius of convergence or is a mark of a genuine curvature
singularity.

On the other hand, the knowledge of the power series solution helps us
to find the large τ asymptotics of the exact solutions in an analytic form.
Namely, by analyzing the structure of the power series solutions (30), we find
that after introducing the scaling variable

v =
z

τ s/4
(31)

the exact solutions behave like

a(τ, z) = a(v) + O
(

1

τ#

)

b(τ, z) = b(v) + O
(

1

τ#

)

c(τ, z) = c(v) + O
(

1

τ#

)

, (32)

10
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where we denoted by ‘#’ a positive (here unspecified) power.
In order to find a(v), b(v) and c(v) in an analytical form we insert the

metric (27) into the Einstein equations (29) and take the limit τ → ∞ keeping
v fixed. We obtain the following set of coupled nonlinear equations:

v(2a′(v)c′(v)+a′(v)b′(v)+2b′(v)c′(v))−6a′(v)−6b′(v)−12c′(v)+vc′(v)2 = 0

3vc′(v)2 + vb′(v)2 + 2vb′′(v) + 4vc′′(v) − 6b′(v) − 12c′(v) + 2vb′(v)c′(v) = 0

2vsb′′(v) + 2sb′(v) + 8a′(v) − vsa′(v)b′(v) − 8b′(v) + vsb′(v)2+

4vsc′′(v) + 4sc′(v) − 2vsa′(v)c′(v) + 2vsc′(v)2 = 0 . (33)

Taking a suitable linear combination of these equations and integrating, we
find that the functions a(v), b(v), and c(v) satisfy a linear relation

(4 − 3s)a(v) + (s − 4)b(v) + 2sc(v) = 0 . (34)

After nontrivial transformations, the remaining equations may be solved giv-
ing the solution

a(v) = A(v) − 2m(v)

b(v) = A(v) + (2s − 2)m(v)

c(v) = A(v) + (2 − s)m(v) (35)

where

A(v) =
1

2

(

log(1 + ∆(s) v4) + log(1 − ∆(s) v4)
)

(36)

m(v) =
1

4∆(s)

(

log(1 + ∆(s) v4) − log(1 − ∆(s) v4)
)

(37)

with

∆(s) =

√

3s2 − 8s + 8

24
. (38)

As a cross-check of this solution we have verified that performing a power
series expansion of (35) indeed coincides with the scaling τ → ∞ limit of the
exact power series solutions.

Let us first specialize to the two cases singled out in section 2, especially
since the perfect fluid case will turn out to be the only one physically relevant.

11

Late-time equations
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As a cross-check of this solution we have verified that performing a power
series expansion of (35) indeed coincides with the scaling τ → ∞ limit of the
exact power series solutions.

Let us first specialize to the two cases singled out in section 2, especially
since the perfect fluid case will turn out to be the only one physically relevant.
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Potentially singular geometry at v4 = �(s)

Riem2 =
P (v, s)

(1��(s)2v8)4

P (v, s) cancels the pole for s =
4

3

The geometry becomes a black hole with a time-dependent horizon 

zh ⇠ z0⌧
1/3

where η0 is related to the shear viscosity through η = η0/τ (which follows
from the scaling η ∝ T 3).

Let us show how this arises using the AdS/CFT methods. We will not
presuppose a specific form of subleading correction but will start from

ε(τ) =
1

τ
4

3

(

1 − 2η0

τ r
+ . . .

)

(41)

with a generic r. In order to verify that plasma expansion follows viscous
hydrodynamics we will have to first show that r = 2

3 . The metric coefficients
will now have an additional piece scaling as 1

τr ar(v). It turns out that the
curvature scalar R2 is always nonsingular at that order8. Hence we have
to go one order further i.e. find all coefficients appearing in the following
expansion

a(z, τ) = a0(v) +
1

τ r
ar(v) +

1

τ 2r
a2r(v) +

1

τ
4

3

a2(v) + . . . (42)

Then the curvature scalar has the form

R
2 = R0(v) +

1

τ r
Rr(v) +

1

τ 2r
R2r(v) +

1

τ
4

3

R2(v) + . . . (43)

with R0(v) and Rr(v) being nonsingular, while both R2r(v) and R2(v) turn
out to have 4th order pole singularities. In order for them to have a chance
to cancel we have to have

r =
2

3
(44)

which is exactly the scaling of a viscosity correction to Bjorken flow. More-
over cancelation occurs only when the shear viscosity coefficient has the
value9

η0 = 2−
1

2 3−
3

4 (45)

which is equivalent to η/s = 1/4π (for details see [16]). In a similar man-
ner one can go one order higher and determine a coefficient of second order
hydrodynamics. However at that order, it turns out that there remains a
leftover logarithmic singularity. We will show, in section 8, that the logarith-
mic singularity arises due to a pathology of the Fefferman-Graham expansion
and can be avoided when one makes a different late time expansion.

8This was first observed for r = 2/3 in [15].
9We set here e0 = 1.

14

At higher orders

Regularity implies r =
2

3

⌘

s
=

1

4⇡
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Deviation from conformality
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Figure 1. Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right) NNLO HTLpt
pressure with lattice data from Borsanyi et al. [1, 4] and Bazavov et al. [13]. For the HTLpt results
a one-loop running coupling constant was used.
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Figure 2. Same as fig. 1 except with a three-loop running coupling constant.

6.3 Pressure

The QGP pressure can be obtained directly from the thermodynamic potential (4.5)

P(T,Λ, µ) = −ΩNNLO(T,Λ, µ) , (6.5)

where Λ above is understood to include both scales Λg and Λq. In figures 1 and 2 we

compare the scaled NNLO HTLpt pressure for µB = 0 (left) and µB = 400 MeV (right)

with lattice data from refs. [1, 3, 13]. In order to gauge the sensitivity of the results to

the order of the running coupling, in fig. 1 we show the results obtained using a one-loop

running and in fig. 2 the results obtained using a three-loop running. As can be seen by

comparing these two sets, the sensitivity of the results to the order of the running coupling

4We have checked that for the scale range of interest, this is a very good approximation to the exactly

integrated QCD three-loop β-function.

– 14 –

1 loop Αs ; "MS #176 MeVΜB #0 MeV

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

200 400 600 800 1000
0

1

2

3

4

5

T !MeV"

#
!
%
3"
$%
T
4

WB

NNLO HTLpt

1 loop Αs ; "MS #176 MeVΜB #400MeV

!

!

!

!

!!!
!
!

!

!

!

!
!

!

!

200 400 600 800 1000
0

1

2

3

4

5

T !MeV"

#
!
%
3"
$%
T
4

WB

NNLO HTLpt

Figure 6. Comparison of the Nf = 2+1, µB = 0 (left) and µB = 400 MeV (right) NNLO HTLpt
trace anomaly with lattice data. The µB = 0 lattice data are from [1] and the µB = 400 MeV
lattice data are from [4]. For the HTLpt results a one-loop running coupling constant was used.

In figure 5 we plot the scaled NNLO HTLpt entropy density for µB = 0 (left) and µB = 400

MeV (right) together with µ = 0 lattice data from ref. [1]. As we can see from this figure,

there is quite good agreement between the NNLO HTLpt entropy density and the lattice

data when the central value of the scale is used.

6.6 Trace anomaly

Since it is typically the trace anomaly itself which is computed on the lattice and then

integrated to obtain the other thermodynamic functions, it is interesting to compare di-

rectly with lattice data for the trace anomaly. The trace anomaly is simply I = E − 3P.

In the ideal gas limit, the trace anomaly goes to zero since E = 3P. When interactions are

included, however, the trace anomaly (interaction measure) becomes non-zero. In figure

6 we plot the NNLO HTLpt trace anomaly scaled by T 4 for µB = 0 (left) and µB = 400

MeV (right) together with lattice data from refs. [1] and [4]. As we can see from this figure,

there is quite good agreement between the NNLO HTLpt trace anomaly and the lattice

data for T ! 220 MeV when the central value of the scale is used.

6.7 Speed of sound

Another quantity which is phenomenologically interesting is the speed of sound. The speed

of sound squared is defined as

c2s =
∂P

∂E
. (6.10)

In figure 7 we plot the NNLO HTLpt speed of sound for µB = 0 (left) and µB = 400 MeV

(right) together with lattice data from refs. [1] and [4]. As we can see from this figure,

there is quite good agreement between the NNLO HTLpt speed of sound and the lattice

data when the central value of the scale is used.

– 17 –
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trace anomaly
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The study of deviations from the conformal behavior in the  
QGP dynamics has started only recently

[Buchel, Heller, Myers][Janik, Plewa, Soltanpanahi, Spalinski] 
consider the equilibration rate determined by lowest  
quasi-normal modes in non-conformal theories 

4

FIG. 4. Real (green continuous) and minus imaginary (red
dashed) parts of the lowest quasinormal mode frequencies for
O3 and O2 operators (see (10)) in N = 2⇤ gauge theory (from
top to bottom). The frequencies do not change significantly
as a function of m/T.

FIG. 5. Real (green continuous) and minus imaginary (red
dashed) parts of the lowest quasinormal mode frequencies the
operators O� and O↵ (from top to bottom) in N = 2⇤ gauge
theory.

The matter fluctuations �↵ and �� represent operators
with � = 2 and 3 in the N = 2⇤ gauge theory. The
results for the lowest QNM frequencies of �↵ and �� are
collected in Fig. 5. As in the previous examples, the
frequencies exhibit a very mild dependence on m/T .

Thermalization time for the energy-momentum

tensor.– Quasinormal modes of the energy-momentum
tensor in the boundary theory are dual to metric pertur-
bations in the bulk. Di↵erent polarizations decompose
into decoupled sets of various helicities with respect
to the propagation direction in the boundary [9]. The

simplest helicity-2 fluctuations are always equivalent
to a minimally coupled massless scalar [32] and its
momentum-dependence (at m/T = 4.8) is given by
� = 4 curve in Fig. 3. In the zero-momentum limit,
the helicity distinction vanishes implying that generic
metric perturbations obey the equation of motion for a
minimally coupled massless scalar. Hence in this case,
the QNM are the same as the scalar operator with
� = 4 plotted in Fig. 2. Finally, in Fig. 5, we plot
zero-momentum QNM associated with the perturbations
of the background scalars ↵ and �. Again, we find rather
mild dependence on m/T .

Comparison to conformal plasma at nonzero chemical

potential.– From an operational point of view, deviations
from conformality in N = 2⇤ gauge theory amount to the
presence of a dimensionless parameter m/T characteriz-
ing the equilibrium configuration. In order to confirm the
robustness of our main result, we consider a strongly cou-
pled conformal QGP at nonzero chemical potential µ. In
this case, the dimensionless parameter is µ/T . The dual
solution is the anti-de Sitter Reissner-Nordstrom black
hole (AdS-RN). We compute the lowest zero-momentum
quasinormal modes of phenomenological operators (with
� = 2, 3 and 4) dual to probe (neutral) scalar fields in
the AdS-RN background.

Again, as shown in Fig. 6, the frequencies depend
mildly on µ/T unless the chemical potential (at fixed
temperature) gets big enough to see the e↵ects of the
critical behaviour associated in the dual description with
the (near-)extremal AdS-RN. In this case, the dominant
QNM has a purely imaginary frequency. We explain in
the supplemental material why we do not expect similar
transition to occur in N = 2⇤ gauge theory and refer the
reader to refs [33] and [34], which discuss these purely
imaginary QNM in detail.

Note added: While this letter was being finalized we
learnt about the upcoming results of Ref. [35], which
presents the computation of QNM in a bottom-up holo-
graphic QCD model. The results of [35] are in line with
the point of view presented in this letter, i.e. equilibra-
tion rates in strongly coupled nonconformal plasma are
not very di↵erent from those of N = 4 SYM.

We would like to thank A. Donos, J. Fuini, U. Gursoy,
R. Janik, J. Jottar, M. Kaminski, L. Lehner, H. Soltan-
panahi, M. Spalinski, W. van der Schee and I. Yavin for
useful discussions, correspondence and comments on the
draft. We would like to thank the authors of articles [17]
and [35] for generously sharing their drafts prior to publi-
cation. This work was partly supported by the National
Science Centre grant 2012/07/B/ST2/03794. Research
at Perimeter Institute is supported by the Government
of Canada through Industry Canada and by the Province
of Ontario through the Ministry of Research & Innova-
tion. AB and RCM acknowledge support from NSERC

Figure 2: The imaginary parts of the lowest quasinormal mode at k = 0 for the
potentials from table 1 (left). The imaginary part for potential V

2

together with the
“phenomenological” according to Eq. (33) (right).

the metric perturbations4.

5.1 The imaginary part of the QNM frequencies — damping

In the left panel of figure 2 we show the imaginary parts of the QNM frequencies in

units of temperature which is the natural scale in the problem i.e.

Im!

2 ⇡ T
(32)

We observe that the damping significantly decreases (by a factor of 2) close to the

transition. This shows that in the nonconformal case nonequilibrium dynamics become

more important close to Tc. Moreover we find that the plots basically lie on top of each

other for the various potentials from table 1. This indicates that the QNM frequencies

are not sensitive to the fine details of the potentials but are essentially dependent just

on the equation of state (speed of sound c2s(T )), which was the common denominator

of all the potentials from table 1.

In order to parameterize the dependence of the damping on deviation from conformality,

we propose a phenomenological formula expressing this as a linear combination of c2s� 1

3

and T d
dT
c2s(T ). Specifically, we posit

Im! � Im!
conf

2⇡T
= �

✓
c2s(T )�

1

3

◆
+ �0 T

d

dT
c2s(T ) (33)

where �, �0 are phenomenological parameters and Im!
conf

2⇡ T
= �1.373 is the conformal

4See the discussion in section 4.1

13

N=2*
V (�) = cosh(�) + �

2 + �

4 + �

6

Einstein-scalar with 

Variation of the imaginary part = attenuation rate by factor of ~ 2
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[Ishii, Kiritsis, Rosen] consider thermalization after a quench  
and are mostly interested in the dependence on the quench  
parameters 

Figure 8. Typical behavior of the magnitude of the late time deviation of hTxxi from its final

value. This particular ring-down corresponds to the late time behavior of the perturbation

shown in figure 12. The red line is a fit to the exponential decay provided by �hTxxi ⇠
0.65 e�0.5v.

further justifies our “large” and “small” naming conventions for the black hole branches.

In the studies which follow, the smallest black hole we perturb has �H/�c = 3.23. In

figure 7, the area of the black hole horizons as a function of � is given, and this smallest

black hole is indicated by a red dot. Evidently, the horizon area of �H/�c = 3.23 in

this case is about 1/5 of that at the first order phase transition.

Generically, a time dependent perturbation of a black hole will take a static initial

state through a non-linear regime controlled by the details of the quench profile, followed

by a linear regime governed by the “ring-down” to the final steady state configuration

(there may also be late time power law tails in some situations, but we will not be

concerned with these here). The ring-down is fully determined by the quasi-normal

modes of the final state black hole, and is dominated by the mode closest to the real

axis, !1. In turn, the quasi-normal modes characterize the linear response of the final

state to small perturbations in any of several available channels. In the present case,

where the perturbations preserve the homogeneity of the spatial R3, the gauge invariant

perturbations organize themselves into representations of SO(3) [36, 37] transforming

as the transverse-traceless (spin-2), vector, or scalar.

In figure 8 the late time ring-down of one particular time dependent perturbation

is shown on a logarithmic scale. The figure clearly indicates the presence of an excited

mode of the form

�hT̂xxi ⇠ ReZ1e
�i!1v with !1 = !⇤ � i� (6.1)

for some real constants Z1, !⇤, and � > 0. Although figure 8 illustrates the general

late time features of any perturbation in our study, it is important to note that the

– 28 –

Figure 6. The energy density hT̂tti as a function of entropy s, in units of f0 and with  = 1.

The asymptotic behaviors are hT̂tti / s4/3 and hT̂tti / s
p� ln s in the limits of very large and

very small black holes, and a fit for the former is plotted with a red dotted line. The green

and magenta dots mark the locations of the first order phase transition at T = Tc and the

division between small and large black holes at T = T0, respectively.

for any boundary theory operator ⌦. In figure 5 we plot the hatted correlators as

functions of the value the scalar obtains in the IR for future reference.

The numerical procedure we adopt is initialized by the boundary coe�cients a4, f2
and f0, which are in turn extracted from numerically generated initial states as de-

scribed in the previous section. For this reason, the evolution’s stability depends cru-

cially on the accuracy of these values. It is thus reassuring that we find excellent

agreement between the free energy density computed from (3.12), and from boundary

data using F = �p ⌘ �hT̂xxi.
We also compute the dependence of the energy density hT̂tti on the system’s entropy

density s. The former is calculated from the UV boundary coe�cients extracted from

our numerical solutions, while the latter is computed from horizon data. The result

appears in figure 6, in units of f̃0 and  = 1. At large energy density, our model correctly

reproduces the expectation for a conformal theory, hT̂tti / s4/3. As the energy density

decreases, the dimensionfull source’s explicit breaking of the UV theory’s conformal

invariance becomes increasingly important. In the extremal limit, the small black hole

branch is characterized by a logarithmic dependence of the energy density on entropy

density, hT̂tti / s
p� ln s. From the point of view of the boundary gauge theory, the

latter behavior does not manifest as the thermodynamically preferred solution is the

thermal gas whose entropy density is subleading in Nc.

– 22 –
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Bottom-up non-conformal models  [Gursoy, Kiritsis…] 

The numerical construction and thermodynamic properties of the static, equilib-

rium solutions of our model are discussed in section 3. This section primarily serves as

an orientation to our holographic gauge theory. In it one finds the dependence of the

free energy and entropy density of our strongly coupled matter on temperature, as well

as a comparison of the temperature dependence of the speed of sound in our model to

that of SU(3) Yang-Mills. It is complemented by the results of section 4 which further

characterize the static states in terms of their thermodynamic one-point functions.

Section 5 details the computational approach we adopt to evolve our gravitational

system in time. This approach is based on an assortment of well known numerical

techniques that we carefully tune to accommodate the specifics of our model. Most

notably, we explain how we handle the copious logarithmic fall-o↵s in the near boundary

behavior of bulk fields. These fall o↵s are generic to gravitational theories in odd bulk

dimensions, and present obstacles to the accurate determination of the normalizable

and non-normalizable UV coe�cients of the various bulk fields. This section will be

primarily interesting to those who would like to numerically study dynamical quenches

in related models.

The output from our numerical method and the interpretation of this output is

contained in sections 6 and 7. These sections constitute the primary results of our

study. They include examples of the response our model to various classes of quench by

a relevant scalar operator, as well as a dynamical phase diagram for the outcome of these

quenches when performed in a particular initial state. We examine the dependence of

the final equilibrium state on the quench parameters, and comment on the appearance

of an anticipated universal scaling regime in the fast quench limit. The connection

and applicability of these results to similar processes in other theories is discussed

in section 8. Specifically, we comment on the implications of our calculations for the

thermalization of probes in the strongly coupled matter produced in heavy ion collisions,

as well as future directions one might wish to pursue.

2 The Model

2.1 The Action
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S =
1

22

Z
d5x

p�g

✓
R� 4

3
(@')2 + V (')

◆
� 1

2

Z

@

d4x
p��K (2.1)
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Here X and V0 and ⇠ are constants. We consider X < 0 with no loss of generality.

An analytic black-brane and a thermal gas (no-horizon) solution of this action

can be found with the following metric functions

ds2 = e2A(u)
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�f(u)dt2 + �ijdx

idxj
�
+

du2

f(u)
, � = �(u) , (2.3)

where for the thermal gas f(u) = 1.

Both for the black-hole and the thermal gas, one has the same dilaton:

� ⌘ e� =
⇣
C1 � 4X2u

`

⌘ 3
4X

, (2.4)

the scale factor,

eA = eA0�
1

3X , (2.5)
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and the blackening factor

f = eg = 1� C2�
� 4(1�X2)

3X . (2.6)

The boundary is located at u = �1. For f being a monotonically decreasing

function one needs to require

0 > X > �1

2
. (2.7)

Here C1, C2 and A0 are integration constants: C1 is the location of the singularity, C2

determines the location of the horizon. In terms of dual theory one can think of A0

determining the size of the dual plasma (or the string tension) C1 determining some

scale conformality breaking scale ⇤QCD and C2 the temperature T of the plasma.

For the thermal gas we set C2 = 0.

We find f ! 1 on the boundary, (� ! 0) as long as X < 1. There is an event

horizon located at (using (2.4)),

�h = C
3X

4(1�X2)

2 i.e.
uh

`
=

C1

4X2
� C

� X2

1�X2

2

4X2
. (2.8)

The curvature singularity is located at � = 1 i.e.,

u0

`
=

C1

4X2
. (2.9)

We note that when C2 6= 0 then uh < u0 and indeed there is a well-behaved black-hole

solution to the system. The metric of the black-hole is given by,

ds2 = e2A0

⇣
C1 � 4X2u

`

⌘ 1
2X2

⇢
dxidx

i �
✓
1� C2(C1 � 4X2u

`
)
1�X2

X2

◆
dt2

�

+

✓
1� C2(C1 � 4X2u

`
)
1�X2

X2

◆�1

du2. (2.10)

The temperature of the black-hole is determined by requiring regularity of the Eu-

clidean continuation at uh:

� =
1

T
=

4⇡

|f 0(uh)|eA(uh)
. (2.11)

One finds,

� = ⇡`
e�A0C

�
1
4�X2

1�X2

2

1�X2
. (2.12)

The physically most interesting case corresponds to the valueX = �1/2, see [?]. Very

interestingly, in this case the temperature is only given by the integration constant

A0:

� =
1

T
=

4⇡`

3eA0
. (2.13)
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The trace of the energy-momentum tensor is given by

�T µ
µ = E + 3F = 3cs

X2

1�X2
(T `)

4(1�X2)

1�4X2 . (2.22)

Alternatively we can obtain the free energy from the action (2.1) evaluated on-shell.

Below we evaluate the di↵erence of the on-shell actions between the black-brane

and the thermal gas and we prove that the analytic solutions describe above do not

demonstrate a Hawking-Page transition. The action is given by (2.1). One finds that

the trace of the intrinsic curvature is given by,

K =

p
f

2
(8A0 + f 0/f) (2.23)

in the domain-wall coordinate system. Thus, the boundary contribution to the action

becomes,

Sbnd = �M3V3�
�
eg+4A(8A0 + f 0/f)

 
ub
, (2.24)

where ub denotes the regulated boundary of the geometry infinitesimally close to

�1.

The bulk contribution to the action, evaluated on the solution can be simplified

as,

Sbulk = 2M3V3�

Z us

ub

du
d

du

�
fe4AA0�

= 2M3V3�
�
f(us)e

4A(us)A0(us)� f(ub)e
4A(ub)A0(ub)

 
. (2.25)

Here us denotes u0 or uh depending on which appears first. Thus, for the black-hole

solution us = uh, whereas for the thermal gas us = u0.

The first term in (2.25) deserves attention. Clearly it vanishes for the black-hole,

as f(uh) = 0 by definition. However, it is not a priori clear that it also vanishes for

the thermal gas. A straightforward computation using (2.5),(2.4) and,

A0 = �1

`
�� 4X

3 (2.26)

shows that it indeed vanishes for our physically interesting case X2 < 1. Therefore,

one obtains the following total expression for the action from (2.24) and (2.25) by

dropping the first term in (2.25):

S = �2M3V3�e
g(ub)+4A(ub)

✓
5A0(ub) +

1

2
g0(ub)

◆
. (2.27)

In order to compare the energies of the black-hole and the thermal gas geome-

tries, we fix the UV asymptotics of the thermal gas geometry by requiring the same

circumference for the Euclidean time at ub:

�̄ = �
p
f(ub). (2.28)
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Boost-invariant CR flow

Trace condition 

temperature T with some function T (⌧). Then if we equate (2.22) to what we have

found in (2.22) for the CR plasma and obtain the equation

�T⌧⌧ +
1

⌧ 2
Tyy + 2Txx = �c T ⇠ , (2.37)

where c is the integration constant that appears in (2.22) and

⇠ =
4(1�X2)

1� 4X2
. (2.38)

Defining T⌧⌧ = ✏(⌧) we find

Tµ⌫ = diag
⇣
✏(⌧), �⌧ 3@⌧ ✏� ⌧ 2✏, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠

⌘
. (2.39)

Now, if we further impose the perfect fluid form

T µ⌫ = (✏+ p)uµu⌫ + p⌘µ⌫ , (2.40)

then we find that

Txx = ⌧�2Tyy . (2.41)

Using (2.39) in this equation we can solve for the energy ✏(⌧) as

✏(⌧) = ✏0⌧
� 4

3 +
c

2
⌧�

4
3

Z 1

⌧

d⌧̃ ⌧̃
1
3T (⌧̃)⇠ . (2.42)

Assuming some power-law behavior for T of the form

T = T0⌧
�↵ , (2.43)

Then we obtain from (2.42)

✏(⌧) = ✏0⌧
� 4

3 +
c T ⇠

0

4� 3↵⇠
⌧�↵⇠ . (2.44)

If we want the second term to dominate the late time behavior then we should require

↵⇠ <
4

3
. (2.45)

This is consistent with what Matti finds numerically i.e.

↵⇠ =
4

3
(1�X2) . (2.46)

Using (2.38) then we determine the late time behavior of the temperature as

T / ⌧�↵, ↵ =
1

3
(1� 4X2) , (2.47)

which indeed becomes T ⇠ ⌧�1/3 in the conformal case X = 0.

– 6 –

temperature T with some function T (⌧). Then if we equate (2.22) to what we have

found in (2.22) for the CR plasma and obtain the equation

�T⌧⌧ +
1

⌧ 2
Tyy + 2Txx = �c T ⇠ , (2.37)

where c is the integration constant that appears in (2.22) and

⇠ =
4(1�X2)

1� 4X2
. (2.38)

Defining T⌧⌧ = ✏(⌧) we find

Tµ⌫ = diag
⇣
✏(⌧), �⌧ 3@⌧ ✏� ⌧ 2✏, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠

⌘
. (2.39)

Now, if we further impose the perfect fluid form

T µ⌫ = (✏+ p)uµu⌫ + p⌘µ⌫ , (2.40)

then we find that

Txx = ⌧�2Tyy . (2.41)

Using (2.39) in this equation we can solve for the energy ✏(⌧) as

✏(⌧) = ✏0⌧
� 4

3 +
c

2
⌧�

4
3

Z 1

⌧

d⌧̃ ⌧̃
1
3T (⌧̃)⇠ . (2.42)

Assuming some power-law behavior for T of the form

T = T0⌧
�↵ , (2.43)

Then we obtain from (2.42)

✏(⌧) = ✏0⌧
� 4

3 +
c T ⇠

0

4� 3↵⇠
⌧�↵⇠ . (2.44)

If we want the second term to dominate the late time behavior then we should require

↵⇠ <
4

3
. (2.45)

This is consistent with what Matti finds numerically i.e.

↵⇠ =
4

3
(1�X2) . (2.46)

Using (2.38) then we determine the late time behavior of the temperature as

T / ⌧�↵, ↵ =
1

3
(1� 4X2) , (2.47)

which indeed becomes T ⇠ ⌧�1/3 in the conformal case X = 0.

– 6 –

Assuming                the energy is determined            

temperature T with some function T (⌧). Then if we equate (2.22) to what we have

found in (2.22) for the CR plasma and obtain the equation

�T⌧⌧ +
1

⌧ 2
Tyy + 2Txx = �c T ⇠ , (2.37)

where c is the integration constant that appears in (2.22) and

⇠ =
4(1�X2)

1� 4X2
. (2.38)

Defining T⌧⌧ = ✏(⌧) we find

Tµ⌫ = diag
⇣
✏(⌧), �⌧ 3@⌧ ✏� ⌧ 2✏, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠

⌘
. (2.39)

Now, if we further impose the perfect fluid form

T µ⌫ = (✏+ p)uµu⌫ + p⌘µ⌫ , (2.40)

then we find that

Txx = ⌧�2Tyy . (2.41)

Using (2.39) in this equation we can solve for the energy ✏(⌧) as

✏(⌧) = ✏0⌧
� 4

3 +
c

2
⌧�

4
3

Z 1

⌧

d⌧̃ ⌧̃
1
3T (⌧̃)⇠ . (2.42)

Assuming some power-law behavior for T of the form

T = T0⌧
�↵ , (2.43)

Then we obtain from (2.42)

✏(⌧) = ✏0⌧
� 4

3 +
c T ⇠

0

4� 3↵⇠
⌧�↵⇠ . (2.44)

If we want the second term to dominate the late time behavior then we should require

↵⇠ <
4

3
. (2.45)

This is consistent with what Matti finds numerically i.e.

↵⇠ =
4

3
(1�X2) . (2.46)

Using (2.38) then we determine the late time behavior of the temperature as

T / ⌧�↵, ↵ =
1

3
(1� 4X2) , (2.47)

which indeed becomes T ⇠ ⌧�1/3 in the conformal case X = 0.

– 6 –

temperature T with some function T (⌧). Then if we equate (2.22) to what we have

found in (2.22) for the CR plasma and obtain the equation

�T⌧⌧ +
1

⌧ 2
Tyy + 2Txx = �c T ⇠ , (2.37)

where c is the integration constant that appears in (2.22) and

⇠ =
4(1�X2)

1� 4X2
. (2.38)

Defining T⌧⌧ = ✏(⌧) we find

Tµ⌫ = diag
⇣
✏(⌧), �⌧ 3@⌧ ✏� ⌧ 2✏, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠

⌘
. (2.39)

Now, if we further impose the perfect fluid form

T µ⌫ = (✏+ p)uµu⌫ + p⌘µ⌫ , (2.40)

then we find that

Txx = ⌧�2Tyy . (2.41)

Using (2.39) in this equation we can solve for the energy ✏(⌧) as

✏(⌧) = ✏0⌧
� 4

3 +
c

2
⌧�

4
3

Z 1

⌧

d⌧̃ ⌧̃
1
3T (⌧̃)⇠ . (2.42)

Assuming some power-law behavior for T of the form

T = T0⌧
�↵ , (2.43)

Then we obtain from (2.42)

✏(⌧) = ✏0⌧
� 4

3 +
c T ⇠

0

4� 3↵⇠
⌧�↵⇠ . (2.44)

If we want the second term to dominate the late time behavior then we should require

↵⇠ <
4

3
. (2.45)

This is consistent with what Matti finds numerically i.e.

↵⇠ =
4

3
(1�X2) . (2.46)

Using (2.38) then we determine the late time behavior of the temperature as

T / ⌧�↵, ↵ =
1

3
(1� 4X2) , (2.47)

which indeed becomes T ⇠ ⌧�1/3 in the conformal case X = 0.

– 6 –

temperature T with some function T (⌧). Then if we equate (2.22) to what we have

found in (2.22) for the CR plasma and obtain the equation

�T⌧⌧ +
1

⌧ 2
Tyy + 2Txx = �c T ⇠ , (2.37)

where c is the integration constant that appears in (2.22) and

⇠ =
4(1�X2)

1� 4X2
. (2.38)

Defining T⌧⌧ = ✏(⌧) we find

Tµ⌫ = diag
⇣
✏(⌧), �⌧ 3@⌧ ✏� ⌧ 2✏, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠, ✏+

⌧

2
@⌧ ✏�

c

2
T ⇠

⌘
. (2.39)

Now, if we further impose the perfect fluid form

T µ⌫ = (✏+ p)uµu⌫ + p⌘µ⌫ , (2.40)

then we find that

Txx = ⌧�2Tyy . (2.41)

Using (2.39) in this equation we can solve for the energy ✏(⌧) as

✏(⌧) = ✏0⌧
� 4

3 +
c

2
⌧�

4
3

Z 1

⌧

d⌧̃ ⌧̃
1
3T (⌧̃)⇠ . (2.42)

Assuming some power-law behavior for T of the form

T = T0⌧
�↵ , (2.43)

Then we obtain from (2.42)

✏(⌧) = ✏0⌧
� 4

3 +
c T ⇠

0

4� 3↵⇠
⌧�↵⇠ . (2.44)

If we want the second term to dominate the late time behavior then we should require

↵⇠ <
4

3
. (2.45)

This is consistent with what Matti finds numerically i.e.

↵⇠ =
4

3
(1�X2) . (2.46)

Using (2.38) then we determine the late time behavior of the temperature as

T / ⌧�↵, ↵ =
1

3
(1� 4X2) , (2.47)

which indeed becomes T ⇠ ⌧�1/3 in the conformal case X = 0.

– 6 –

If                 the trace anomaly determines the 	


late time behaviour 

↵⇠ <
4

3



19

3. Bjorken flow in the CR background

Let us then discuss the late time behavior of the Bjorken flow for the CR solu-

tion discussed above, following very closely the analysis of [2]. We start from the

metric (2.15) in the conformal coordinate system, by using the coordinate

z =
r � r0
`0

(3.1)

which runs from zero in the UV to infinity at the IR singularity, thus e↵ectively

choosing r0 = 0. We further set the temperature to zero so that C2 = 0 in (2.6) and

the blackening factor f is identically equal to one. For simplicity we also set A0 = 0

and `0 = 1. Then the metric of (2.15) can be written as

ds2 = z
� 2

1�4X2
�
dz2 � dt2 + �ijdx

idxj
�
, (3.2)

whereas the dilaton solution becomes

� = z
� 3X

1�4X2 . (3.3)

In order to study the Bjorken flow, we switch to the proper time ⌧ and pseudo

rapidity y as in (2.33). Following [2], we define

v =
z

⌧ s/4
, (3.4)

where 0 < s < 4, and write an Ansatz for the metric in the Fe↵erman-Graham form

(adapted to the case of nonzero X within the interval �1/2 < X < 0)

ds2 = z
� 2

1�4X2
�
dz2 � ea(v)d⌧ 2 + eb(v)⌧ 2dy2 + ec(v)dx2

?
�
. (3.5)

As the CR solution contains a nontrivial dilaton profile, we must allow for it to vary

as well. Therefore we write

� = z
� 3X

1�4X2 e�1(v) . (3.6)

It is then straightforward to derive the equations of motion for the “variation”

(a, b, c,�1) at late times, ⌧ ! 1, keeping v fixed. At leading order in 1/⌧ the

– 7 –
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v =
z

⌧ s/4

Complicated system of equations for late time…

Basis of solutions

Einstein equations1 yield the system

0 =
v (1� 4X2) (a0(v)b0(v) + 2a0(v)c0(v) + 2b0(v)c0(v) + c0(v)2)

16
(3.7)

� 3 (a0(v) + b0(v) + 2c0(v))

8
+X�0

1(v)�
v (1� 4X2)�0

1(v)
2

6

+
3 (1�X2)

�
1� e�8X�1(v)/3

�

2v (1� 4X2)

0 =� 1

2
a0(v) (b0(v) + 2c0(v)) +

3a0(v)

v (1� 4X2)
(3.8)

+ b00(v) +
1

2
b0(v)2 + 2c00(v) + c0(v)2 +

8

3
�0
1(v)

2 � 16X�0
1(v)

v � 4vX2

0 = a00(v)� 1

2
b0(v) (a0(v) + 2c0(v)) +

1

2
a0(v)2 +

3b0(v)

v � 4vX2
(3.9)

+ 2c00(v) + c0(v)2 +
8

3
�0
1(v)

2 � 16X�0
1(v)

v � 4vX2

0 =
1

2
a0(v) (b0(v)� c0(v)) + b00(v)� 3 (b0(v)� c0(v))

v � 4vX2
(3.10)

+
1

2
b0(v)c0(v) +

1

2
b0(v)2 � c00(v)� c0(v)2

0 =
�
3s� 4 + 16X2

�
a0(v)� (s� 4)

�
1� 4X2

�
b0(v) (3.11)

� 2s
�
1� 4X2

�
c0(v)� 8sX�0

1(v) .

The number of equations exceeds the number of variables by one, but the system

is not overconstrained: any of the second order equations can be derived from the

other equations. Notice that this system approaches smoothly that found in [2] as

X ! 0 (so that the CR solution becomes the AdS5 solution).

3.1 Analytic solution

Remarkably, the general solution to the system (3.7)–(3.11) can be found analytically.

First it is useful to change the basis of functions as

a(v) = A(v)� 2
�
1� 4X2

�
m(v) + 2Xn(v) (3.12)

b(v) = A(v) + 2
�
s� 1 + 4X2

�
m(v) + 2Xn(v) (3.13)

c(v) = A(v)�
�
s� 2 + 8X2

�
m(v)� 2Xn(v) (3.14)

�1(v) =
3

2
XA(v) +X

�
1� 4X2

�
m(v) +

�
1�X2

�
n(v) , (3.15)

1It turns out to be useful to change variables from z to v before deriving the equations.
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The equations decouple

where the coe�cients were chosen such that (3.11) is automatically satisfied. The

other equations can then be combined to give

m00(w) =
4

�
m0(w)� 2A0(w)m0(w) ,

m00(w)

m0(w)
=

n00(w)

n0(w)
, (3.16)

where

w = log v , � =
1� 4X2

1�X2
. (3.17)

From here one readily obtains

A(w) =
2

�
w � 1

2
logm0(w) + const. , n(w) = m(w) + const. , (3.18)

where the integration constant  can take any real value. Therefore A and n can

be eliminated from the system of equations. The remaining single equation can be

written in a polynomial form by using the derivative p(w) = m0(w):

8 (1�X2)X4

(1� 4X2)2
+ 4

KX2

1� 4X2
p(w)� S2 �K2

2 (1�X2)
p(w)2 (3.19)

+Kp0(w) +
2X2 � 4X4

1� 4X2

p0(w)

p(w)
� 1 +X2

2

p0(w)2

p(w)2
= �p00(w)

2p(w)
,

where

S =
4

3

r
(1� 4X2)2 +

1

8
(1�X2) (3s� 4 + 16X2 + 4X)2 + (1�X2)2 , (3.20)

K =
4

3
X

�
X � 4X3 + � X2

�
. (3.21)

The general solution to (3.19) is discussed in Appendix Maybe we should

add an Appendix?. The solution which is regular in the UV, i.e., has an analytic

expansion in the variable

v4/� = e4w/� (3.22)

can be written as

w = log v = w0 �
� (S +K)

4X2
m+

�

4
log

�
e2Sm � 1

�

�1� 4X2

4X2
log 2F1

✓
1,

S(1� 2X2) +K

2S(1�X2)
;
1� 2X2

1�X2
; 1� e2Sm

◆
. (3.23)

That is, the inverse function w(m) could be found in closed form. This solution has

a “horizon” at a finite value of w where m tends to infinity, which screens the IR

singularity at w = +1. Therefore w runs from �1 in the UV to a finite value in

the IR, whereas m runs from zero to +1.

Let us comment on the constants of integration at this point. The general

solution to the original system in (3.7)–(3.11) has six integration constants, but

– 9 –

where the coe�cients were chosen such that (3.11) is automatically satisfied. The

other equations can then be combined to give

m00(w) =
4

�
m0(w)� 2A0(w)m0(w) ,

m00(w)

m0(w)
=

n00(w)

n0(w)
, (3.16)

where

w = log v , � =
1� 4X2

1�X2
. (3.17)

From here one readily obtains

A(w) =
2

�
w � 1

2
logm0(w) + const. , n(w) = m(w) + const. , (3.18)

where the integration constant  can take any real value. Therefore A and n can

be eliminated from the system of equations. The remaining single equation can be

written in a polynomial form by using the derivative p(w) = m0(w):

8 (1�X2)X4

(1� 4X2)2
+ 4

KX2

1� 4X2
p(w)� S2 �K2

2 (1�X2)
p(w)2 (3.19)

+Kp0(w) +
2X2 � 4X4

1� 4X2

p0(w)

p(w)
� 1 +X2

2

p0(w)2

p(w)2
= �p00(w)

2p(w)
,

where

S =
4

3

r
(1� 4X2)2 +

1

8
(1�X2) (3s� 4 + 16X2 + 4X)2 + (1�X2)2 , (3.20)

K =
4

3
X

�
X � 4X3 + � X2

�
. (3.21)

The general solution to (3.19) is discussed in Appendix Maybe we should

add an Appendix?. The solution which is regular in the UV, i.e., has an analytic

expansion in the variable

v4/� = e4w/� (3.22)

can be written as

w = log v = w0 �
� (S +K)

4X2
m+

�

4
log

�
e2Sm � 1

�

�1� 4X2

4X2
log 2F1

✓
1,

S(1� 2X2) +K

2S(1�X2)
;
1� 2X2

1�X2
; 1� e2Sm

◆
. (3.23)

That is, the inverse function w(m) could be found in closed form. This solution has

a “horizon” at a finite value of w where m tends to infinity, which screens the IR

singularity at w = +1. Therefore w runs from �1 in the UV to a finite value in

the IR, whereas m runs from zero to +1.

Let us comment on the constants of integration at this point. The general

solution to the original system in (3.7)–(3.11) has six integration constants, but

– 9 –



20

The remaining equation for             can be integrated and a closed 	


form  can be found for v(m)

m(v)

Using           as radial coordinate yields a simple form for the metric   m

three of them are trivial as a, b and c only appear through their derivatives. It is

convenient to fix these constants by requiring that these functions vanish in the UV.

Indeed, we have chosen the corresponding constant term in m so that m = 0 maps to

the UV in the solution (3.23). In addition, one constant corresponds to the invariance

of the system in rescalings v ! Cv and is identified as w0 in (3.23). The remaining

two constants are nontrivial: one of them is identified as  defined in (3.18) and the

other was fixed by requiring the solution to be regular in the UV.

The metric (3.5) takes a rather simple form when evaluated on the analytic

solution. As the result (3.23) suggests, it is convenient to usem as the bulk coordinate

instead of v. We also fix the constant terms appearing in (3.18) such that A and n

vanish in the UV, and set w0 = 0 in (3.23). Inserting the result in (3.5), we obtain

ds2 ' ⌧
� s

2(1�4X2)

⇢
⌧ s/2

✓
S�

2

◆2 �
e2Sm � 1

�� 2
1�X2 e

2S+2K
1�X2 m

dm2

+
�
e2Sm � 1

�� 1
2(1�X2)


� e

S+4K
2(1�X2)

m
e�2�md⌧ 2 (3.24)

+⌧ 2e
S+4K

2(1�X2)
m
e2(s��)mdy2 + e

S�2K
2(1�X2)

m
e(2��s)mdx2

?

��
,

where we dropped terms which are irrelevant for the dynamics at leading order in 1/⌧ .

Interestingly, the hypergeometric function appearing in the solution (3.23) cancels

in the metric so that the leading terms can be expressed in terms of elementary

functions. Similarly, the dilaton can be written as

� = ⌧
� 3sX

4(1�4X2)
�
e2Sm � 1

�� 3X
4(1�X2) e

3(SX2+K)
4X(1�X2)

m
. (3.25)

Notice that the constant factor S�/2 in the first line of (3.24) could be eliminated

by varying the value of the constant `0.

3.2 IR regularity

Let us then analyze the behavior of the metric in the IR, m ! +1. We first define

⇣ = exp


�S +K

1�X2
m

�
. (3.26)

It is straightforward to show that ⇣ ! 0 in the IR for all allowed values of X, s, and

. Changing variables from m to ⇣, the various components of the metric have the

behavior

g⇣⇣ ⇠ ⇣0 , g⌧⌧ ⇠ ⇣
S�4K+4(1�4X2)

2(S�K) , (3.27)

gyy ⇠ ⇣
S�4K�4s(1�X2)+4(1�4X2)

2(S�K) , gxx ⇠ ⇣
S+2K+2s(1�X2)�4(1�4X2)

2(S�K) ,
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IR regularity at                   requires m ! 1

as ⇣ ! 0, where gxx = gx2x2 = gx3x3 . For the static black hole metric, after a

similar change of variables the component g⌧⌧ is / ⇣2 while the other components

take constant values as ⇣ ! 0 [2]. Therefore we need to require that the exponents

in the asymptotic expressions for gyy and gxx in (3.27) vanish. This can only happen

if S takes the value 4(1�4X2)/3. From (3.20) we see that this value is the minimum

which is reached when

s =
4

3

�
1� 4X2

�
,  = 0 . (3.28)

For these values we find that K = 4X2(1 � 4X2)/3, and substituting in (3.27) we

confirm that g⌧⌧ ⇠ ⇣2 while the other components approach constant values as ⇣ ! 0.

Therefore regularity of the metric in the IR requires that the conditions (3.28)

be satisfied. Substituting the conditions in the general expression (3.24), we obtain

an explicit formula for the regular metric:

ds2 ' ⌧�
8
3X

2


2�(1� 4X2)

3

�2 ⇣
e

8
3 (1�4X2)m � 1

⌘� 2
1�X2

e
8
3 (1+X2)�m dm2

+⌧�
2
3

⇣
e

8
3 (1�4X2)m � 1

⌘� 1
2(1�X2)

(3.29)

⇥

� e�

4
3 (1�2X2)�md⌧ 2 + ⌧ 2e

4
3�mdy2 + e

4
3�mdx2

?

�
.

We can then also confirm that the Ricci scalar and the squared Riemann tensor are

indeed regular for this metric in the IR similarly as in the conformal case of [2]:

R ' �20
1�X2

(1� 4X2)2
⌧ 8X

2/3 (3.30)

R2 = Rµ⌫↵�Rµ⌫↵� ' 112
(1�X2)2

(1� 4X2)4
⌧ 16X

2/3 (3.31)

up to corrections suppressed by 1/⌧ or by exp(�m). Since the values of these scalars

increase with ⌧ , it is essential to first consider the leading solution in 1/⌧ and impose

its regularity on the horizon. For the general solution of (3.23) the expressions for R

and R2 become rather complicated, but we have verified numerically that all other

choices except for those given in (3.28) lead to a singularity on the horizon.

4. Generalized dimensional reduction

The most e�cient way to extract the stress-energy tensor of the dual theory is to lift

the solution to a higher dimension where it becomes asymptotically AdS. We consider

the diagonal reduction as in section (2.1) of [3] in the case where the internal manifold

is flat. Let us review the procedure. Starting from the higher dimensional action

S =
1

16⇡G̃N

Z
dd+1x d2��dy

p
�g̃

⇣
R̃� 2⇤

⌘
(4.1)
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For these values the metric is that of a BH with a moving horizon 

S,K constants depending on s,
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The dual stress-energy tensor can be obtained by holographic 	


renormalization in 5d, or more easily lifting the solution by a 	


generalized dimensional reduction 
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and using the following Ansatz for the metric on Md+1 ⇥ R2��d

eds
2
= e��1�(x)dx2 + e�2�(x)dy2 (4.2)

we find

e��1�R̃ = R + (�1d+ �2(d� 2�)) r · @�+

+


�d(d� 1)

4
(�1 + �2)

2 + �(d� 1)(�1 + �2)�2 �
�(2� � 1)

2
�22

�
(@�)2 .

Requiring that the final action is in the Einstein frame and the dilaton is normalized

as in (2.1) gives

�1 =
4
p
2� � dp

3(d� 1)(2� � 1)
, �2 =

4
p
d� 1p

3(2� � 1)(2� � d)
. (4.3)

Fixing the potential to be V0e
�8x/3� gives

2� � d =
4(d� 1)2x2

3� 4(d� 1)x2
.

The number of extra dimensions goes from 0 to 1 for x 2 [�1/2, 0] (in d = 4), so

the number of counterterms required to regularise the action depends on the value

of x. However, since the uplifted metric (4.2) is asymptotically AdS we can read o↵

the energy momentum tensor simply from the appropriate coe�cient of the metric

in the Fe↵erman-Graham expansion:

hT µ⌫i2� =
2�l2��1

16⇡G̃N

g̃µ⌫(2�) , (4.4)

where l is the AdS radius: ⇤ = ��(2� � 1)/l2. To obtain the d-dimensional tensor

we need to take into account the (infinite) volume of the compactification manifold,

that we reabsorb in a redefinition of the Newton’s constant, and the rescaling of the

induced metric on the boundary. For d = 4,

� = 2
1� x2

1� 4x2
, �1 =

8x

3
.

The expansion of the metric in FG coordinates reads

g̃ =
d⇣2

⇣2
+

1

⇣2
(�̃(0) + . . .) = e�2�dy2 + e��1�⇣↵(dz2 + �(0) + . . .)

� = � log ⇣ + �(0) + . . . (4.5)

with

↵ = � 2

1� 4x2
, � = � 3x

1� 4x2
.
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1� 4x2
, � = � 3x

1� 4x2
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Tµ⌫ consistent with perfect fluid and 

leading w.r.t. the conformal form

✏(⌧) ⇠ ⌧�
4
3 (1�X2)
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The solution appears singular for X=-1/2 but it can be removed by 	


a rescaling

where we again dropped the nondiagonal terms in the metric as well as an extra term

in the ⌧⌧ component, which are irrelevant since they do not enter the dynamics (i.e.,

the Einstein equations) at leading order in 1/⌧ .

We can then also confirm that the Ricci scalar and the squared Riemann tensor

are indeed regular for this metric in the IR similarly as in the conformal case of [2]:

R ' �20
1�X2

(1� 4X2)2
⌧ 8X

2/3 (3.43)

R2 = Rµ⌫↵�Rµ⌫↵� ' 112
(1�X2)2

(1� 4X2)4
⌧ 16X

2/3 (3.44)

up to corrections suppressed by 1/⌧ or by exp(�m) (or equivalently by (1 � v̂)).

Since the values of these scalars increase with ⌧ , it is essential to first consider the

leading solution in 1/⌧ and impose its regularity on the horizon. For the general

solution of (3.30) the expressions for R and R2 become rather complicated, but as

we mentioned above, we have verified numerically that all other choices except for

those given in (3.35) lead to a curvature singularity at the horizon.

3.3 Continuation of the result to �1 < X  �1/2

The final regular metric in (3.36) and in (3.39) appears singular at X = �1/2 where

⇠ also diverges. It is, however, quite easy to absorb the singularity by a suitable

redefinition of coordinates and variables: recall from above that such a singularity

was absent for the static BH in the domain wall coordinates but appeared after the

change to conformal coordinates in (2.16). First we reinstate the dependence of the

metric and the dilaton potential on `0:

ds2 = v̂
� 2

1�4X2

(
⌧�

8
3X

2

1� v̂⇠
(`0)2dv̂2 + ⌧�

2
3
⇥
�
�
1� v̂⇠

�
d⌧ 2 + ⌧ 2dy2 + dx2

?
⇤
)

V =
12(1�X2)

(1� 4X2)2(`0)2
�� 8X

3 . (3.45)

By setting here

`0 =
1

1� 4X2
, (3.46)

which corresponds to ` = eA0 in (2.16), the divergence in the dilaton potential is

cancelled. Next we could switch to an analog of the domain wall coordinates, but

the expression for the metric takes a slightly simpler form if we use instead

q = v̂
1

1�4X2 . (3.47)

The resulting solution and the dilaton potential read

ds2 =
⌧�

8
3X

2
q�2(1+4X2)

1� q4(1�X2)
dq2 + ⌧�

2
3 q�2

h
�
⇣
1� q4(1�X2)

⌘
d⌧ 2 + ⌧ 2dy2 + dx2

?

i

� = ⌧�Xq�3X (3.48)

V = 12(1�X2)�� 8X
3
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In this form it can be continued to -1< X < - 1/2  

However the solution is unphysical, the temperature grows with time 	


and it corresponds to moving on the small (unstable) BH branch 

Pressureless gas in the limit X = -1/2
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At             it is necessary to take into account the subleading 	


behaviour of the potential 

An analytic solution is not available, need to work in an expansion 	


in 1/�

X = �1

2

V ⇠ e�8/3X� �P

e2A(�) = e2A0e2�/(3X)�P/(4X2)

e2B(�) = e2B0e
8
3X���P

f(�) = 1� ea(�h��)(�h/�)
b

+O
✓
1

�

◆

a =
4(1�X2)

3X
, b =

P (1 +X2)

2X2

where �1 < X0 < 0, P > 0 and V1 > 0 are real constants. These type of potentials,

in particular for X0 = �1/2, P = 1/2, are singled out in the improved holographic

QCD program [7, 8, 9, 10] as the large dilation limit of a choice of theories that yield

the best it to the glueball spectra and thermodynamics [11]. Notice that this form

of the potential can be valid only in the IR, since it is not well-defined when � < 0.

The solution to (
exppotmod
4.1) cannot be obtained analytically. However, we are interested

in the IR limit where large � approximation can be used to construct an analytic

solution given in powers of 1/� 2 We are interested in the black brane solutions with

a horizon uh on which the value of the dilation is �h. The solution presented below

will be valid in the limit 1 ⌧ � ⌧ �h. The derivation is presented in Appendix
App-modsol
A.

The solution is most easily expressed in a coordinate system where � is the radial

variable,

ds2 = e2A(�)
��f(�)dt2 + �ijdx

idxj
�
+ e2B(�) d�

2

f(�)
, � = �(u) , (4.2) df

where,

e2A(�) = e2A0e2�/(3X0)�P/(4X2
0 ) (1 +O(1/�)) , (4.3)

e2B(�) = e2B0e
8
3X0���P (1 +O(1/�)) , (4.4)

f(�) = 1� ea(�h

��)(�h/�)
b (1 +O(1/�)) . (4.5)

Here A0 is an integration constants, �h is the location of the horizon and

e2B0 =
4(1�X2

0 )

3X2
0V1

, a =
4(1�X2

0 )

3X0
, b =

P (1 +X�2
0 )

2
, (4.6) cons

are constants. The O(1/�) corrections can be determined analytically order by order.

This solution reduces to (
Asol
3.5 and (

fsol
3.6) when P = 0. Conversion to domain-wall

coordinates is straightforward. One finds

� = e� ⇡ (4X0c(u� u0)/3)
3/(4X0)(3/(4X0) log(4X0c(u� u0)/3))

3P/(8X0) , (4.7) phiumod

where c is a constant, see Appendix
App-modsol
A.

4.2 Evolving metric in the presence of an IR modification

Let us then discuss how the evolving metric changes if the dilaton potential is mod-

ified by a power-law function in the IR as above in (
exppotmod
4.1):

V (�) = V1e
�8X0�/3�P


1 +O

✓
1

�

◆�
(4.8)

2This limit corresponds to the late-time behavior of the non-static black brane solution, as

discussed in the next section.

– 18 –
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A working  Ansatz is

General solution not available

A(�) ! A(�) , B(�) ! B(�)

f(�) ! f(�+ a1 log ⌧ + a2 log log ⌧, 1/ log ⌧)

a1 = X , a2 =
3P

8X

Holographic EM tensor

Naturally, the solution also agrees with that obtained without the IR correction in

the limit P ! 0. It is possible to find the solution at higher orders in 1/ log ⌧ if one

writes a more generic Ansatz for the metric than that of (
evolvingansatz
4.9), in analogy to (

dabc
3.29)

above.

Finally let us comment on the thermodynamics of the solution. If we apply the

formulae of the static solution as in the previous section, we find that

T =
1

4⇡
|@�f |eAh

�B
h ' (1�X2

0 )

⇡
(�X0)

P

8X2
0
(1+4X2

0 )
⌧�

1
3 (1�4X2

0 )(log ⌧)P , (4.16)

S =
1

4G
e3Ah ' (�X0)

3P
8X2

0

4G⌧
, (4.17)

where we set A0 = 0 and V1 = 12(1 �X2
0 ) to be able to compare to (

TSfromBH
3.65) directly.

Notice that the time dependence arises solely from the scale factors evaluated at

the horizon. Interestingly, the logarithmic corrections to the entropy density cancel,

in agreement with the perfect fluid picture: there is no production of entropy. If

X0 = �1/2, temperature decreases with ⌧ only for P < 0.

The corresponding energy density and pressure read

E ' 3(�X0)
P

2X2
0
(1+X2

0 )

16⇡G
⌧�

4
3 (1�X2

0 )(log ⌧)P , (4.18)

F ' �1� 4X2
0

16⇡G
(�X0)

P

2X2
0
(1+X2

0 )
⌧�

4
3 (1�X2

0 )(log ⌧)P . (4.19)

For X0 = �1/2 the above expression for the free energy vanishes. In this case the

leading nonzero expression for the free energy is suppressed by 1/ log ⌧ :

F ' 3P

16⇡G
2�P (log ⌧)P�1 . (4.20)

The critical value where the free energy changes sign is therefore P = 0, which is the

same value where the static configurations change from confining to deconfining [7, 8],

in analogy to the value X0 = �1/2 for the leading power behavior.

4.3 Holographic stress-energy tensor

The power-law corrected potential (
exppotmod
4.1) does not come from a generalized dimen-

sional reduction. We also cannot carry out the holographic renormalisation reliably,

as we do not know the asymptotic form of the solution in the UV. Nevertheless, if

we attempt to extract the finite, T-dependent part of the stress-energy tensor using

the expansion (
fasympmodpot
4.15), we find

✏ ⇠ 3f0
2(1� 4x2)

�
P

2 (1+ 1
x

2 )⌧�
1
3 (1�4x2)(log ⌧)

P

2 (1� 1
x

2 ) ,

p ⇠ 1

3
(1� 4x2) ✏ . (4.21)

– 20 –In the late-time scaling limit ✏ ⇠ ⌧�
1
3 (1�4X2)

(log ⌧)P

consistent with thermodynamics



25

Conclusions

We found an analyitic solution describing the late-time 	


behavior of a class of non-conformal theories

Our results indicate that the deviation from conformality 	


results in a slower relaxation to equilibrium, slightly different 	


than results from quasi-normal modes

The relaxation stops  at the critical case                    	


separating confining from non-confining theories, 	


beyond this a new Ansatz may be needed, perhaps 	


describing relaxation towards the critical temperature 

X = �1

2



Extensions
• Higher-order terms and viscosity 

• Early-time dynamics 

• Corrections to boost-invariance and isotropy 

• Models with three potentials (confining, analytic BH  

       solutions known but with T-dependent parameters 

• Matching with AdS UV  

• Relation with resummation of hydrodynamic series  

          [Heller, Janik, Witaszczyk] 
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Thank you


