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Let us consider the following BRST quartet                       where the Greek letters denote 
anticommuting quantities and the Latin letters the commuting ones.  
We assign the following transformation rules: 

Q✓ = t , Qt = 0

Qb = ⌘ , Q⌘ = 0

(✓, ⌘, t, b)

and we consider the following expression  

Q(b✓) = (Qb)✓ + bQ✓ = ⌘✓ + bt

Now, we define the following integral 

Y =

Z
dbd⌘ei(⌘✓+bt) =

Z
dbd⌘(1 + i⌘✓)eibt

= i

Z
db✓eibt = i✓�(t)

This quantity has the following two properties: 1) it is BRST closed and 2) it is not exact.  

where the distributional rules have been applied. 

Q(✓�(t)) = t�(t) = 0 ✓�(t) 6= Q⌦

BRST quartets vs PCO 



This quantity can be integrated w.r.t. to the variables   (✓, t)Z
d✓dtY = i

    is known in the literature as Picture Changing Operator where the variables                       are interpreted  
 as the ghost fields of RNS/Pure Spinor/Topological String theory, but it plays a fundamental role to  
define a sensible integration theory on super-manifolds.  

(✓, ⌘, t, b)

Let us generalise it: instead of a single quartet, we consider a multiplet

(✓i, ⌘i, ti, bi)

Y

  with i = 1, ..,m and we can construct a PCO as a product of m PCO’s as  

Ym =
mY

i=1

✓i�(ti) = ✓1 . . . ✓m�(t1) . . . �(tm)

which is invariant under any transformation of GL(m,C) of the variables  ✓i ! ⇤ j
i ✓j , ti ! ⇤ j

i tj ,

since we have  

✓1 . . . ✓m ! det(⇤)✓1 . . . ✓m �(t1) . . . �(tm) ! 1

det(⇤)
�(t1) . . . �(tm)

Again the integral of        gives 1 (with the correct normalisation).   Ym



Integration on supermanifolds
MLet us now move to supermanifolds. We denote by         a (n|m)-dimensional supermanifold 

parametrised by the local coordinates                 .(xµ, ✓i)

We introduce also the corresponding 1-forms                        with the properties (dxµ, d✓i)

dxµ ^ dx⌫ = �dx⌫ ^ dxµ dxµ ^ d✓i = d✓i ^ dxµ d✓i ^ d✓j = d✓j ^ d✓i

Then a generic (super) form has the form 

! =
k=p,l=qX

k=1,l=1

![µ1...µk](i1...il)dx
µ1 ^ · · · ^ dx

µk ^ d✓

i1 ^ · · · ^ d✓

il

where the components                                             are functions of the manifold coordinates. The 
indices                  are antisymmetrized while                     are symmetrized. The total form degree is 
fixed by the p + q, summing the form degree of the bosonic coordinates and the form degree of the  
fermionic ones. 

![µ1...µk](i1...il)(x, ✓)
[µ1 . . . µk] (i1 . . . il)

This implies that there is no upper bound to the form degree and there is no top form.  



A. How to define a sensible theory of integration of differential forms on supermanifolds? 

B. How to define de Rham/Čech cohomology in the space of superforms?  

C. How to construct the Poincaré duality in the space of superforms?  

D. How to define a Hodge operator?  

E. How to construct the Hodge theory for a supermanifold? 

We answer to all of these questions and apply the results for 

1. Constructing new supersymmetric actions with higher-derivative terms 

2. Constructing the Hodge dualities for superfields 



� � �•(M)

1

A. Integration of Forms on Supermanifolds

Let us begin with a conventional manifold        with dimension = n, given a generic differential formM

This is a section of the exterior bundle and it can be decomposed as

! = !0 + !1 + !2 + · · ·+ !n

where the last term is the top form element. Locally it can be written as 

and its integral on the manifold is 
Z

M
! =

Z
f(x)dnx , f(x) =

p
g ![µ1...µn](x)✏

µ1...µn

where the second member is a Lebesgue/Riemann integral of the function built in terms of the components  
of the degree n term of the differential form. This integral can be view from a more algebraic way by  
introducing a set of anti-commuting variables       , rewriting the diff. form as function in a superspace  µ

!(x, ) =
nX

p=0

![µ1...µp](x)dx
µ1

. . . dx

µp

!̂(x, ) =
nX

p=0

![µ1...µp](x) 
µ1

. . . 

µp



and its integral is defined as 
Z

M
! =

Z

M̂
!̂

where the integral over the anticommuting coordinates is performed by usual Berezin integral. The  
measure for the r.h.s. is sometimes written as                     (where I neglect details for curved spaces). [dnxdn ]

Let us move to supermanifolds. A superform for a supermanifold is written as 

! =
X

p,q

![µ1...µp](i1...iq)(x, ✓)dx
µ1 ^ · · · ^ dx

µp ^ d✓

i1 ^ · · · ^ d✓

iq

and we can apply the same strategy. First we promote the bosonic 1-forms to anticommuting variables and  
second, we promote the fermonic 1-forms to commuting variables

dx

µ !  

µ
, d✓

i ! t

i

and finally we would like to use the same definition of the integral as above by  
considering the superform       as a function on this new superspace ! !(x, ✓, , t)

The integrals over the fermionic coordinates are Berezin integrals, over the x-coordinates is the usual  
Lebesgue/Riemann integral, but the integral over t is not well defined on the superforms. 



!(x, ✓, , t) ! !(x, ✓, , t)
mY

i=1

✓

i
�(ti)

by multiplying it by the PCO! This leads to a new quantity: an INTEGRAL FORM as 

where n = form degree and m = picture number

For the Dirac delta functions we assume the following properties (distributional properties) 

�(ti) ^ �(tj) = ��(tj) ^ �(ti)

ti�(ti) = 0

ti�(n)(ti) = ��(n�1)(ti)

!

(n|m) = !n(x, ✓) 
n

mY

i=1

✓

i
�(ti)

One way to solve this issue is to construct the new form



Now a generic (pseudo)-form can be written as 

! =
X

p,r,s

![µ1...µp](i1...ir)[ir+1...is](x, ✓)dx
µ1 ^ · · · ^ dx

µp ^ d✓

i1 ^ · · · ^ d✓

ir ^ �(d✓ir+1) ^ · · · ^ �(d✓is)

 each pieces are differential forms with fixed form degree = p + r and picture number = s - r

There is an additional detail that we can add: we should also admit derivatives of the Dirac delta functions

�(p)(d✓i)

and they have picture number = +1 but form degree = - p. They have negative form numbers!!

A generic (p|q) form is written in terms of 

dx

µ ^ · · · ^ d✓

i · · · ^ �

(p)(d✓j)

and we denote by                                the space of pseudo-forms. For q=0, we have the well-known  
 superforms, for q=m we have the integral forms and for 0< q<m, we have the space of pseudo-forms. 

⌦(p|q)(M)



Now we have the following complexes 

0 ! ⌦(0|0) ! ⌦(0|0) ! · · · ! ⌦(n|0) ! ⌦(n+1|0) . . .
where all spaces are finite dimensional. The complex is not bounded from above. The differential d acts  
along the arrows. 

· · · ! ⌦(�2|m) ! ⌦(�1|m) ! · · · ! ⌦(n|m) ! 0

this is the complex of integral forms. It is unbounded from below, but it is bounded from above. The  
last space is the space of top forms. Notice that since we have maximum number of delta’s, there is  
no room for  d✓0s

Then finally we have 
Z

M̂
!̂ =

Z

M
![µ1...µn][i1...im](x, ✓)✏

µ1...µn
✏

i1...im

B. Cohomology



There are additional complexes of the form: 

· · · ! ⌦(�2|q) ! ⌦(�1|q) ! · · · ! ⌦(n|q) ! . . .
which is not bounded from above nor from below. In addition, each single space is infinite dimensional  
space and the geometry of them is completely unknown. 

0
d−→

Z↑
...

· · · Ω(−1|s) d−→
...

Z↑
· · · Ω(−1|n) d−→

Ω(0|0) d−→ · · · Ω(r|0) · · · d−→ Ω(m|0)

Z↑↓ Y Z↑↓ Y Z↑↓ Y

...
...

...

Ω(0|s) d−→ · · · Ω(r|s) · · · d−→ Ω(m|s)

...
...

...

Z↑↓ Y Z↑↓ Y Z↑↓ Y

Ω(0|n) d−→ · · · Ω(r|n) · · · d−→ Ω(m|n)

d−→ Ω(m+1|0) · · ·
↓ Y

...
d−→ Ω(m+1|s) · · ·

...

↓ Y

d−→ 0

Fig. 1: Structure of the supercomplex of forms on a supermanifold of dimension (m|n) . The

form degree r changes going from left to right while the picture degree s changes going from up

to down. The rectangle contains the subset of the supercomplex where the various pictures are

isomorphic.

On the other hand the inverse picture changing operator Z1 ... n annihilates all elements

of Ω(•|n) but those of the form Y1 ... n ω , which are mapped back to the corresponding

r-forms ω . In conclusion the composite operators

Z1 ... n ◦ Y1 ... n : Ω((r|0)) −→ Ω((r|0)), r ≤ m ,

Y1 ... n ◦ Z1 ... n : Ω((r|n)) −→ Ω(r|n)), r ≥ 0
(3.46)

act as projectors on the s = 0 and s = n pictures respectively.

With different picture changing operators, for example Yα = θα δ(dθα∧) + dxj ∧
δ′(dθα∧) , we would obtain other correspondences between cohomology classes. Never-

theless whatever choice one makes for Y and Z , Y cannot exist for negative form degree

because Ω(r|0) = 0 with r < 0, and Z cannot exist for form degree greater than the even

dimension of the supermanifold because Ω(r|n) = 0 with r > m. The structure of the

supercomplex of forms is summarized in figure 1 . The rectangle contains the region of

Ω(•|•) with 0 < r < m where it is possible to define both Y and Z .

The most general descending picture changing operator is a combination of the Yα in

(3.40) with operators of the form dxi1 ∧ · · ·∧dxi2h+1 ∧dθα1 ∧ · · ·∧dθαk−2h−1 ∧ δ(k)(dθβ∧) ,

for example

dxi ∧ δ′(dθα∧) , dxi ∧ dθa ∧ δ′′(dθβ∧) , dxi ∧ dxj ∧ dxk ∧ δ′′′(dθα∧) ,

dxi ∧ dθα ∧ dθβ ∧ δ′′′(dθγ∧) , dxi ∧ dxj ∧ dθα ∧ dxk ∧ δ(4)(dθβ∧) .

Each d-closed combination Y of these terms realizes a cohomological map of the s-picture

to the (s+1)-picture. By multiplying n picture changing operators of order 1 one obtains

picture changing operators of order n which are combinations of objects of the form

dxi1 ∧ . . . ∧ dxik ∧ (θ1)ϵ1 · · · (θn)ϵn δ(h1)(dθ1∧) · · · δ(hn)(dθn∧) (3.47)

17

The operators Y and Z are known as Picture Changing Operators and act vertically in the complexes. 

In summary, we have 



These two operators (the expression of Z is rather complicate and it is not displayed)  
are d-closed and they are not d-exact. The Y operators are elements of the cohomology 

H(0|m)(M)

This implies that given a pseudo form (p|q) and multiplying it by a PCO                                    
we have 

Yi = ✓i�(d✓i)

Yi : H
(p|q)(M) ! H(p|q+1)(M)

This observation implies that if there were cohomology in a given space,  
this can be mapped into a space with another picture.Since  
the two complexes                       and                         are either bounded from  
below or from above, this means that there is no cohomology below and above.  

⌦(p|0)(M) ⌦(p|m)(M)

So, the cohomology is entirely contained into the square 
bounded by the 0-forms with 0 pictures and 
from the integral forms with n form degree and m picture. 
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We will see later, in Section 6, that integral forms form a new complex as follows

· · · d�⌃ ⇥(r|q) d�⌃ ⇥(r+1|q) · · · d�⌃ ⇥(p+1|q) d�⌃ 0 (26)

where⇥(p+1|q) is the top ‘‘form’’ dx[K1 · · · dxKp+1]⌅(d⌃ [i1) · · · ⌅(d⌃ iq])which can be integrated on the supermanifold. As in the
usual commuting geometry, there is an isomorphism between the cohomologies H(0|0) and H(p+1|q) on a supermanifold of
dimension (p + 1|q). In addition, one can define two operations acting on the cohomology groups H(r|s) which change the
picture number s (see [11]).

Given a function f (x, ⌃) on the superspace C(p+1|q), we define its integral by the super top-form �(p+1|q) =
f (x, ⌃)dx1 · · · dxp+1⌅(d⌃1) · · · ⌅(d⌃ q) belonging to⇥(p+1|q) as follows

�

C(p+1|q)
�(p+1|q) = ⇧ i1···iq ⌃ i1 · · ·  ⌃ iq

�

Cp+1
f (x, ⌃) (27)

where the last equalities is obtained by integrating on the delta functions and selecting the bosonic top form. The remaining
integrals are the usual integral of densities and the Berezin integral. The latter can be understood in terms of the Berezinian
sheaf [12]. It is easy to show that indeed themeasure is invariant under general coordinate changes and the density transform
as a Berezinian with the superdeterminant.

5. �ech cohomology of P1|1

Wedescribe now �ech cohomology on super-projective spaces, with respect to this particular sheaf of ‘‘integral 1-forms’’.
We will begin by considering P1|1. P1 has a natural covering with two charts, U0 and U1, where

U0 = {[z0; z1] � P1 : z0  = 0}, (28)

U1 = {[z0; z1] � P1 : z1  = 0}. (29)

The affine coordinates are ⇤ = z1
z0

on U0 and ⇥⇤ = z0
z1

on U1. The odd generators are ⌥ on U0 and ⇥⌥ on U1. The gluing
morphism of sheaves on the intersection U0 ↵ U1 has pull-back given by:

�⇥ : O(U0 ↵ U1)[⌥] ⌦�⌃ O(U0 ↵ U1)[⇥⌥] (30)

with the requirement that:

�⇥(⇤ ) = 1
⇥⇤

, �⇥(⌥) =
⇥⌥
⇥⇤

. (31)

We now consider a sheaf of differential on P1|1. As we already said in the previous section, we must add objects of the
type ‘‘d⇤ ’’ and of the type ‘‘d⌥ ’’ on U0. But d⌥ is an even generator, because⌥ is odd, so we are not able to find a differential
form of maximal degree. We introduce then the generator ⌅(d⌥), which allows us to perform integration in the ‘‘variable’’
d⌥ . It satisfies the rule d⌥⌅(d⌥) = 0. This means that ⌅(d⌥) is like a Diracmeasure on the space of the analytic functions in
d⌥ which gives back the evaluation at zero. We must also introduce the derivatives ⌅(n)(d⌥), where d⌥⌅⌥(d⌥) = �⌅(d⌥),
and, in general, d⌥⌅(n)(d⌥) = �⌅(n�1)(d⌥). In this way, the derivatives of the delta represent anticommuting differential
forms of negative degree.

Let’s define the following sheaves of modules:

⇥0|0(U0) = O(U0)[⌥]; (32)

⇥1|0(U0) = O(U0)[⌥]d⇤ ⇤ O(U0)[⌥]d⌥; (33)

and similarly un U1. The general sheaf⇥n|0 is locally made up by objects of the form

O(U0)[⌥](d⇤ )i(d⌥)j, (34)

where i = 0; 1 and i + j = n. The definitions on U1 are similar, the only difference is that we will use the corresponding
coordinates on U1. Note that⇥n|0 is non zero for all integers n ⇧ 0.

We also define the sheaves of modules⇥ l|1, which, on U0, contain elements of the form:

O(U0)[⌥](d⇤ )i⌅(j)(d⌥), (35)

with i � j = l. The elements containing ‘‘d⌥ ’’ cannot appear, since they cancel with the delta forms. On U1, the sections of
this sheaf assume a similar structure with respect to the coordinates on U1.

Notice that ⇥ l|1 is non zero for all integers l with l ⌅ 1, in particular for all negative integers. We still have to describe
coordinate change in the intersection U0 ↵ U1 of the objects {d⇤ , d⌥, ⌅(d⌥)}. They are given by:

�⇥d⇥⇤ = � 1
⇤ 2 d⇤ , (36)

is the simplest non-trivial example of super projective space. It is 
defined as usual as an algebraic variety by quotient  the 
complex superspace         with respect to a complex number 
different  from zero. It can be covered by two patches.  

⇤ ⇥ �•(M)

C�
�
⇧M
⇥
= �•(M)

dxi � ⇥i

⌅µ = dxi1 ⇤ . . . ⇤ dxin ⇤ d⇥i1 ⇤ . . . ⇤ d⇥in

⌅⇤ ⇥ C�
�
⇧M
⇥

⇤

⌅M
⌅⇤ =

⇤

M
⇤

d⇥i ⇤ d⇥j = d⇥j ⇤ d⇥i

dxI

C2|1

�(d⇥i)

1

Transition functions from one patch to another 
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�

C(p+1|q)
�(p+1|q) = ⇧ i1···iq ⌃ i1 · · ·  ⌃ iq

�

Cp+1
f (x, ⌃) (27)
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Wedescribe now �ech cohomology on super-projective spaces, with respect to this particular sheaf of ‘‘integral 1-forms’’.
We will begin by considering P1|1. P1 has a natural covering with two charts, U0 and U1, where

U0 = {[z0; z1] � P1 : z0  = 0}, (28)
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⇥⇤
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. (31)

We now consider a sheaf of differential on P1|1. As we already said in the previous section, we must add objects of the
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where i = 0; 1 and i + j = n. The definitions on U1 are similar, the only difference is that we will use the corresponding
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We also define the sheaves of modules⇥ l|1, which, on U0, contain elements of the form:
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on U0 and ⇥⇤ = z0
z1

on U1. The odd generators are ⌥ on U0 and ⇥⌥ on U1. The gluing
morphism of sheaves on the intersection U0 ↵ U1 has pull-back given by:

�⇥ : O(U0 ↵ U1)[⌥] ⌦�⌃ O(U0 ↵ U1)[⇥⌥] (30)

with the requirement that:

�⇥(⇤ ) = 1
⇥⇤

, �⇥(⌥) =
⇥⌥
⇥⇤

. (31)

We now consider a sheaf of differential on P1|1. As we already said in the previous section, we must add objects of the
type ‘‘d⇤ ’’ and of the type ‘‘d⌥ ’’ on U0. But d⌥ is an even generator, because⌥ is odd, so we are not able to find a differential
form of maximal degree. We introduce then the generator ⌅(d⌥), which allows us to perform integration in the ‘‘variable’’
d⌥ . It satisfies the rule d⌥⌅(d⌥) = 0. This means that ⌅(d⌥) is like a Diracmeasure on the space of the analytic functions in
d⌥ which gives back the evaluation at zero. We must also introduce the derivatives ⌅(n)(d⌥), where d⌥⌅⌥(d⌥) = �⌅(d⌥),
and, in general, d⌥⌅(n)(d⌥) = �⌅(n�1)(d⌥). In this way, the derivatives of the delta represent anticommuting differential
forms of negative degree.

Let’s define the following sheaves of modules:

⇥0|0(U0) = O(U0)[⌥]; (32)

⇥1|0(U0) = O(U0)[⌥]d⇤ ⇤ O(U0)[⌥]d⌥; (33)

and similarly un U1. The general sheaf⇥n|0 is locally made up by objects of the form

O(U0)[⌥](d⇤ )i(d⌥)j, (34)

where i = 0; 1 and i + j = n. The definitions on U1 are similar, the only difference is that we will use the corresponding
coordinates on U1. Note that⇥n|0 is non zero for all integers n ⇧ 0.

We also define the sheaves of modules⇥ l|1, which, on U0, contain elements of the form:

O(U0)[⌥](d⇤ )i⌅(j)(d⌥), (35)

with i � j = l. The elements containing ‘‘d⌥ ’’ cannot appear, since they cancel with the delta forms. On U1, the sections of
this sheaf assume a similar structure with respect to the coordinates on U1.

Notice that ⇥ l|1 is non zero for all integers l with l ⌅ 1, in particular for all negative integers. We still have to describe
coordinate change in the intersection U0 ↵ U1 of the objects {d⇤ , d⌥, ⌅(d⌥)}. They are given by:

�⇥d⇥⇤ = � 1
⇤ 2 d⇤ , (36)

The change of patch reflects upon the following transformation
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and

�⇥d⌅⇧ = d⇧
⇤

� d⇤ ⇧

⇤ 2 . (37)

More generally, for any integer n > 0, we have the formula

�⇥(d⌅⇧)n =
�
d⇧
⇤

⇥n

� d⇤ ⇧

⇤ 2

�
d⇧
⇤

⇥n�1

. (38)

It only remains to compute how ⌅(d⇧) transforms in a coordinate change. We can proceed as outlined in the previous
section.

In this case, we write:

�⇥⌅(d⌅⇧) = ⌅

�
d⇧
⇤

� d⇤ ⇧

⇤ 2

⇥
. (39)

Then:

�⇥⌅(d⌅⇧) = ⇤ ⌅

�
d⇧ � d⇤⇧

⇤

⇥
= ⇤ ⌅ (d⇧) � ⇤

d⇤ ⇧

⇤
⌅(d⇧) = ⇤ ⌅ (d⇧) � ⇧d⇤ ⌅⇧(d⇧). (40)

Notice that the latter equation, together with (37), implies that

�⇥(d⇧̃⌅(d⇧̃)) = 0

as expected.
Hence the generator ⌅(d⇧̃) and its properties are well defined. Similarly, one can compute that the derivatives ⌅n(d⇧̃)

satisfy the following change of coordinates formula

�⇥⌅n(d⌅⇧) = ⇤ n+1⌅n (d⇧) � ⇤ n⇧ d⇤ ⌅n+1(d⇧). (41)

Now, we can proceed in calculating sheaf cohomology for each of the sheaves ⇥ i|j with respect to the covering {U0;U1}.

Theorem 2. The covering {U0;U1} is acyclic with respect to each of the sheaves ⇥ i|j.

Proof. We know that U0 and U1 are both isomorphic to C, while U0 ⌃ U1 is isomorphic to C⇥. Moreover, we know that,
classically, Hq(C; O) = {0}, and that Hq(C⇥; O) = 0. We note that the restriction to each open set of the sheaf ⇥ i|j is simply
the direct sum of the sheaf O a certain finite number of times.

For example,

⇥1|1(U0 ⌃ U1) = O(C⇥)d⇤ ⌅(d⇧) + O(C⇥)⇧d⇤ ⌅(d⇧). (42)

Note that the symbols d⇤ ⌅(d⇧) and⇧d⇤ ⌅(d⇧) represent the generators of a vector space, then, each of the direct summands
can be treated separately. So, we see that a chain of ⇥ i|j (on C or C⇥) is a cocycle if and only if each of the summands is a
cocycle, and it is a coboundary if and only if every summand is a coboundary. �

We now begin the computation of the main cohomology groups on P1|1. For Ȟ0 we have the following result:

Theorem 3. For integers n ⇤ 0, the following isomorphisms hold

Ȟ0(P1|1, ⇥n|0) ⌅=
⇤
0, n > 0,
C, n = 0.

Ȟ0(P1|1, ⇥�n|1) ⌅= C4n+4,

Ȟ0(P1|1, ⇥1|1) ⌅= 0.

Proof.

• Let’s begin from Ȟ0(P1|1, ⇥0|0). On U1, the sections of the sheaf have the structure:

f (⌅⇤ ) + f1(⌅⇤ )⌅⇧ . (43)

On the intersection U0 ⌃ U1 they transform in the following way:

f
�

1
⇤

⇥
+ ⇧

⇤
f1

�
1
⇤

⇥
. (44)

CP(1|1)



Results for cohomology
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f
�

1
⇤

⇥
+ ⇧

⇤
f1

�
1
⇤

⇥
. (44)
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R. Catenacci et al. / Journal of Geometry and Physics 62 (2012) 890–902 897

So, the only globally defined sections (i.e. which can be extended also on P1|1) are the constants:

Ȟ0(P1|1, �0|0) ⇤= C. (45)

• Let’s consider Ȟ0(P1|1, �n|0), with n > 0. On U1, the sections of the sheaf have the structure:
�
f0(⇧⇥ ) + f1(⇧⇥ )⇧⇧

⇥
d⇧⇥ (d⇧⇧)n�1 +

�
f2(⇧⇥ ) + f3(⇧⇥ )⇧⇧

⇥
(d⇧⇧)n. (46)

Since both d⇧⇥ and d⇧⇧ transform, by coordinate change, producing a term 1/⇥ 2, none of these sections can be extended
on the whole P1|1, except the zero section. So,

Ȟ0(P1|1, �n|0) ⇤= 0. (47)

• Let us now compute Ȟ0(P1|1; ��n|1) for every integer n ⇥ 0. On U1, the sections of the sheaf have the form:
�
f0(⇧⇥ ) + f1(⇧⇥ )⇧⇧

⇥
⇤n(d⇧⇧) +

�
f2(⇧⇥ ) + f3(⇧⇥ )⇧⇧

⇥
d⇧⇥ ⇤n+1(d⇧⇧). (48)

Using the change of coordinates formula (41) one can verify that on the intersection U0 ⇧ U1 they transform in the
following way:

⇤
f0

⇤
1
⇥

⌅
+ f1

⇤
1
⇥

⌅
⇧

⇥

⌅ �
⇥ n+1⇤n (d⇧) � ⇥ n⇧ d⇥ ⇤n+1(d⇧)

⇥

�
⇤
f2

⇤
1
⇥

⌅
+ f3

⇤
1
⇥

⌅
⇧

⇥

⌅
d⇥
⇥ 2

�
⇥ n+2⇤n+1 (d⇧) � ⇥ n+1⇧ d⇥ ⇤n+2(d⇧)

⇥

=
⇤
f0

⇤
1
⇥

⌅
⇥ n+1 + f1

⇤
1
⇥

⌅
⇥ n⇧

⌅
⇤n (d⇧)

�
⇤
f2

⇤
1
⇥

⌅
⇥ n

⇤
f0

⇤
1
⇥

⌅
⇥ n + f3

⇤
1
⇥

⌅
⇥ n�1

⌅
⇧

⌅
d⇥ ⇤n+1 (d⇧) . (49)

Therefore this expression extends to a global section if and only if the following conditions hold. The coefficient f0 is a
polynomial of degree n+1, while f1, f2 and f3 are polynomials of degree n. Moreover, if an+1 and bn are the coefficients of
maximal degree in f0 and f3 respectively, then an+1 = �bn. This establishes that Ȟ0(P1|1, ��n|1) has dimension 4n + 4.

• Let’s consider Ȟ0(P1|1; �1|1). On U1, the sections of the sheaf have the structure:
�
f0(⇧⇥ ) + f1(⇧⇥ )⇧⇧

⇥
d⇧⇥ ⇤(d⇧⇧). (50)

These sections cannot be defined on the whole P1, since they transform as:

�
⇤
f0

⇤
1
⇥

⌅
+ f1

⇤
1
⇥

⌅
⇧

⇥

⌅
d⇥
⇥ 2

�
⇥ ⇤ (d⇧) � ⇧d⇥ ⇤⌅(d⇧)

⇥
= �

⇤
f0

⇤
1
⇥

⌅
1
⇥

+ f1
⇤

1
⇥

⌅
⇧

⇥ 2

⌅
d⇥ ⇤ (d⇧) .

So,

Ȟ0(P1|1, �1|1) = 0. � (51)

A similar computation can be done to obtain the groups Ȟ1(P1|1; � i|j). The elements of the �ech cohomology are sections
⌅01 of �

i|j
|U0⇧U1

which cannot be written as differences ⌅0 � ⌅1, with ⌅0 defined on U0 and ⌅1 defined on U1. We have the
following result:

Theorem 4. For integers n ⇥ 0, the following isomorphisms hold

Ȟ1(P1|1, �n|0) ⇤= C4n

Ȟ1(P1|1, ��n|1) ⇤= 0,
Ȟ1(P1|1, �1|1) ⇤= C.

Proof.
• Ȟ1(P1|1, �0|0) = {0}, since for every section on U1 ⇧ U0 we have the structure:

f (⇧⇥ ) + f1(⇧⇥ )⇧⇧, (52)

we can decompose the Laurent series of f and f1 in a singular part and in a holomorphic component. The singular part
is defined on U0, while the holomorphic part is defined on U1. So, it’s easy to write every section of �0|0 on U0 ⇧ U1 as a
difference of sections on U0 and U1.
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• We now compute Ȟ1(P1|1, �n|0) for n > 0. A section on U0 is of the type

(f0(⇥ ) + f1(⇥ )⌅) d⇥ (d⌅)n�1 + (f2(⇥ ) + f3(⇥ )⌅) (d⌅)n

while a section on U1 is of the type
�
g0(⇤⇥ ) + g1(⇤⇥ )⇤⌅

⇥
d⇤⇥ (d⇤⌅)n�1 +

�
g2(⇤⇥ ) + g3(⇤⇥ )⇤⌅

⇥
(d⇤⌅)n.

All functions here are regular. A computation shows that, taking the difference of the two on U0 ⌥ U1 and expressing
everything in the coordinates ⇥ and ⌅ , gives us an expression of the type

�
f0(⇥ ) + g0(⇥ �1)⇥ �(n+1)⇥ d⇥ (d⌅)n�1 +

�
f1(⇥ ) + g1(⇥ �1)⇥ �(n+2) + g2(⇥ �1)⇥ �(n+1)⇥ ⌅d⇥ (d⌅)n�1

+
�
f2(⇥ ) � g2(⇥ �1)⇥ �n⇥ (d⌅)n +

�
f3(⇥ ) � g3(⇥ �1)⇥ �(n+1)⇥ ⌅(d⌅)n.

It is clear that in the first row there are no terms of the type ak⇥ �k with 1 ⇤ k ⇤ n, so this gives us n parameters for
an element of Ȟ1(P1|1, �n|0). Similarly, the second row gives us n parameters, the third gives us n � 1 and the fourth n.
This gives a total of 4n� 1. Notice now that in the above expression the coefficient of ⇥ �(n+1) in the second rowmust be
equal to the coefficient of ⇥ �n in the third row. This constraint on the terms of the above type gives us room for an extra
parameter in the elements of Ȟ1(P1|1, �n|0). We therefore have a total of 4n parameters.

• We compute in a similar way Ȟ1(P1|1, ��n|1) for n ⌅ 0. A computation shows that a difference between a section on U0
and a section on U1 is of the type

�
f0(⇥ ) � g0(⇥ �1)⇥ n+1⇥ ⇤n(d⌅) +

�
f1(⇥ ) � g1(⇥ �1)⇥ n⇥ ⌅⇤n(d⌅) +

�
f2(⇥ ) + g2(⇥ �1)⇥ n⇥ d⇥ ⇤n+1(d⌅)

+
�
f3(⇥ ) + g0(⇥ �1)⇥ n + g3(⇥ �1)⇥ n�1⇥ ⌅d⇥ ⇤n+1(d⌅).

It is clear that every section on U0 ⌥ U1 is represented in such an expression. Therefore we have Ȟ1(P1|1, ��n|1) = 0.
• We see in a similar way that Ȟ1(P1|1; �1|1) = C, in fact the section on U0⌥U1 which are not differences are all generated

by

⌅d⇥ ⇤(d⌅)

⇥
. (53)

This completes the proof. �

Notice that Ȟ1(P1|1, �n+1|0) and Ȟ0(P1|1, ��n|1) have the same dimension. There is an interesting explanation of this
fact, in fact we can construct a pairing

Ȟ1(P1|1, �n+1|0) ⇥ Ȟ0(P1|1, ��n|1) ⌃ Ȟ1(P1|1, �1|1) ⇧= C

as follows. As explained above, an element of Ȟ1(P1|1, �n+1|0) is of the type
�
f0(⇥ �1) + f1(⇥ �1)⌅

⇥
d⇥ (d⌅)n +

�
f2(⇥ �1) + f3(⇥ �1)⌅

⇥
(d⌅)n+1 (54)

where f0 and f1 are polynomials of degree at most n + 1, while f1 and f2 can be chosen to be respectively of degree at most
n + 2 and n or both of degree at most n + 1. An element of Ȟ0(P1|1, ��n|1) is of the type

(g0(⇥ ) + g1(⇥ )⌅) ⇤n(d⌅) + (g2(⇥ ) + g3(⇥ )⌅) d⇥ ⇤n+1(d⌅), (55)

where g0 is a polynomial of degree n + 1, g1, . . . , g3 are polynomials of degree n and the coefficients of maximal degree in
g0 and g3 are opposite to each other. Now recall that we have a pairing

�n+1|0 ⇥ ��n|1 ⌃ �1|1

obeying the rules explained in Section 4. For instance

�d⇥ (d⌅)n, ⇤n(d⌅) = (�1)nn! d⇥ ⇤(d⌅),

�(d⌅)n+1, d⇥ ⇤n+1(d⌅) =� (�1)n(n + 1)! d⇥ ⇤(d⌅),

�d⇥ (d⌅)n, d⇥ ⇤n+1(d⌅) =� (d⌅)n+1, ⇤n(d⌅) = 0.

It can be checked that this product descends to a pairing in cohomology. We have the following

Lemma 5. On P1|1 the above product in cohomology is non-degenerate.
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Ȟ1(P1|1, �n+1|0) ⇥ Ȟ0(P1|1, ��n|1) ⌃ Ȟ1(P1|1, �1|1) ⇧= C

as follows. As explained above, an element of Ȟ1(P1|1, �n+1|0) is of the type
�
f0(⇥ �1) + f1(⇥ �1)⌅

⇥
d⇥ (d⌅)n +

�
f2(⇥ �1) + f3(⇥ �1)⌅

⇥
(d⌅)n+1 (54)

where f0 and f1 are polynomials of degree at most n + 1, while f1 and f2 can be chosen to be respectively of degree at most
n + 2 and n or both of degree at most n + 1. An element of Ȟ0(P1|1, ��n|1) is of the type

(g0(⇥ ) + g1(⇥ )⌅) ⇤n(d⌅) + (g2(⇥ ) + g3(⇥ )⌅) d⇥ ⇤n+1(d⌅), (55)
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�(d⌅)n+1, d⇥ ⇤n+1(d⌅) =� (�1)n(n + 1)! d⇥ ⇤(d⌅),
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It can be checked that this product descends to a pairing in cohomology. We have the following

Lemma 5. On P1|1 the above product in cohomology is non-degenerate.
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Proof. The product between (54) and (55) is cohomologous to the expression

(�1)nn! ((f0g1 + f1g0) � (n + 1)(f2g3 + f3g2)) ⇧ d⇤ ⌅(d⇧). (56)

We have to prove that if (55) is arbitrary and non zero, then we can chose f0, . . . , f3 so that the above expression is
cohomologous to (53). We can assume one of the g0, . . . , g3 to be non zero. If g0 ⌥= 0, let ak be the coefficient of highest
degree in g0, hence k ⇤ n + 1. Define

f1 = C⇤ �k+1,

and f0, f2, f3 to be zero. Then, for suitably chosen C ⌥= 0 we can easily see that (56) is cohomologous to (53). Notice also that
k + 1 ⇤ n + 2, so the choice of f0, . . . , f3 gives a well defined element of Ȟ1(P1|1, ⇥n+1|0). Similar arguments hold when
g1, g2 or g3 are not zero. �

A consequence of this lemma is that Ȟ1(P1|1, ⇥n+1|0) and Ȟ0(P1|1, ⇥�n|1) are dual to each other. This explains why they
have the same dimension.

6. Super de Rham cohomology

Wenow briefly describe smooth and holomorphic de Rham cohomologywith respect to the d differential on superforms.
On a fixed complex supermanifold Mn|m we denote by Ai|j and ⇥ i|j respectively the sheaf of smooth and holomorphic

superforms of degree iwith picture number j and byAi|j and�i|j the global sections of these sheaves. As usual for superforms,
i can also have negative values. On A⇥|j (or locally on A⇥|j) we can define the exterior differential operator d : Ai|j ⌅ Ai+1|j

which satisfies the following rules:

1. d behaves as a differential on functions;
2. d2 = 0;
3. d commutes with ⌅ and its derivatives, and so d(⌅(k)(d⇧)) = 0.

Similarly, the same operator d is defined on�⇥|j, and behaves as the ⌃ operator on holomorphic functions (since ⌃ always
vanishes).

It is easy to verify that, on the intersection of 2 charts, d commuteswith the pull-backmap�⇥ expressing the ‘‘coordinate
changes’’. This is due to the particular definition of the pull-back of the differentials, and it implies that d is well defined and
it does not depend on coordinate systems.

As an example, we prove it on P1|1 in the holomorphic case, leaving to the reader the easy generalization to every other
super-projective space.

• We know that �⇥(⇤⇤ ) = 1
⇤
, so it’s easy to see that d

�
1
⇤

⇥
= �⇥d(⇤⇤ ) = � 1

⇤ 2 d⇤ .

• We know that �⇥(⇤⇧) = ⇧
⇤
, so it’s easy to see that d

�
⇧
⇤

⇥
= �⇥d(⇤⇧) = � 1

⇤ 2 d⇤ ⇧ + d⇧
⇤
.

• We know that �⇥⌅(d⇤⇧) = ⇤ ⌅ (d⇧) � d⇤ ⇧⌅⇧(d⇧). Then, �⇥d(⌅(d⇤⇧)) = 0.
But, d(�⇥⌅(d⇤⇧)) = d(⇤ ⌅ (d⇧) � d⇤ ⇧⌅⇧(d⇧)) = d⇤ ⌅ (d⇧) + d⇤ d⇧ ⌅⇧(d⇧) = 0.

Now (A⇥|j(M), d) and (�⇥|j(M), d) define complexes, whose cohomology groups we call respectively the smooth and
holomorphic super de Rham cohomology groups:

Definition 6. If Zi|j is the set of the d-closed forms in Ai|j, and Bi|j = dAi�1|j. Then, the i|j-th smooth de Rham cohomology
group is the quotient of additive groups:

Hi|j
DR(M

n|m) = Zi|j

Bi|j . (57)

Similarly we define the holomorphic de Rham cohomology groups which we denote by Hi|j
DR(M

n|m, hol).

We now calculate the holomorphic super de Rham cohomology of Cm|n.
Let’s call {⇤1, ⇤2, . . . , ⇤m} the even coordinates and {⇧1, ⇧2, . . . ,⇧n} the odd coordinates of Cm|n.
Clearly the following forms are closed:

(a) 1;
(b) {d⇤i}, i ⌃ {1; 2; . . . ,m};
(c) {d⇧j}, j ⌃ {1; 2; . . . ; n};
(d) {d⇤h · ⇧k + ⇤hd⇧k = d(⇤h · ⇧k)}, h ⌃ {1; 2; . . . ,m}, k ⌃ {1; 2; . . . , n};
(e) {⌅(k)(d⇧a)}, a ⌃ {1; 2; . . . ; n} and k ⌃ N;
(f) {⇧b⌅(d⇧b)}, b ⌃ {1; 2; . . . , n}.
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it does not depend on coordinate systems.
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Definition 6. If Zi|j is the set of the d-closed forms in Ai|j, and Bi|j = dAi�1|j. Then, the i|j-th smooth de Rham cohomology
group is the quotient of additive groups:
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Similarly we define the holomorphic de Rham cohomology groups which we denote by Hi|j
DR(M

n|m, hol).

We now calculate the holomorphic super de Rham cohomology of Cm|n.
Let’s call {⇤1, ⇤2, . . . , ⇤m} the even coordinates and {⇧1, ⇧2, . . . ,⇧n} the odd coordinates of Cm|n.
Clearly the following forms are closed:

(a) 1;
(b) {d⇤i}, i ⌃ {1; 2; . . . ,m};
(c) {d⇧j}, j ⌃ {1; 2; . . . ; n};
(d) {d⇤h · ⇧k + ⇤hd⇧k = d(⇤h · ⇧k)}, h ⌃ {1; 2; . . . ,m}, k ⌃ {1; 2; . . . , n};
(e) {⌅(k)(d⇧a)}, a ⌃ {1; 2; . . . ; n} and k ⌃ N;
(f) {⇧b⌅(d⇧b)}, b ⌃ {1; 2; . . . , n}.
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All other closed forms are products and linear combinations of these with coefficients some holomorphic functions in the
even coordinates. Observe that {⌅b⇤(d⌅b)}, with b ⌥ {1; 2; . . . , n} are not exact. A calculation shows that the holomorphic
super de Rham cohomology Hi|j(Cm|n, hol) is zero whenever i > 0, it is generated by 1 when i = j = 0, by {⌅b⇤(d⌅b)}when
i = 0 and j = 1 and by their j-th exterior products when i = 0 and j ⇤ 2. Similarly we can compute the smooth de Rham
cohomology of Rm|n.

Remark 7. In particular, we see that the super-vector space Cm|n (or Rm|n) does not satisfy the Poincarè lemma, since its
de Rham cohomology is not trivial. The forms {⌅i⇤(d⌅i)} can be seen as even generators of the ‘‘odd component’’ of the
cohomology.

As an example we compute the holomorphic de Rham cohomology of P1|1. We have:

Theorem 8. For n ⇤ 0, the holomorphic de Rham cohomology groups of P1|1 are as follows:

Hn|0
DR (P1|1, hol) ⌅=

�
0, n > 0,
C, n = 0.

H�n|1
DR (P1|1, hol) ⌅=

�
0, n > 0,
C, n = 0.

H1|1
DR (P1|1, hol) ⌅= 0.

Proof. We have given explicit descriptions of global sections of the sheaves � i|j in Theorem 3 and therefore it is a rather
straightforward computation to determinewhich forms are closed andwhich are exact in terms of the coefficients describing
the forms (see formulas (46) and (48)). We leave the details to the reader. Notice that H0|1

DR (P1|1, hol) is generated by the
closed form ⌅⇤(d⌅) which is globally defined on P1|1. �

Now consider a general smooth super manifoldMn|m. OnM we can define the pre-sheaf which associates to every open
subset U ⇧ M the smooth super de Rham i|j-cohomology group of Un|m and we denote the corresponding sheaf by H i|j. If
follows from the above remark thatH i|j is the constantC-sheaf when i, j = 0, a non zero sheaf when i = 0 and j > 0 and the
zero sheaf otherwise. It makes therefore sense to consider the �ech cohomology groups which we denote by Ȟp(Mn|m, H i|j)
(which are zero when i > 0). Recall that a good cover is an open covering U⇥ of M such that every non-empty finite
intersection U⇥0 � U⇥1 � · · · � U⇥p is diffeomorphic to Rn. We can now prove a generalization of the classical equivalence of
�ech and De Rham cohomology.

Theorem 9. Given a supermanifold Mn|m, for i ⇤ 0 we have the following isomorphism

Hi|j
DR(M

n|m) ⌅= Ȟi(Mn|m, H0|j). (58)

Proof. For the proofwe canuse the samemethodused in [13] for the classical equivalence of�ech andDeRhamcohomology.
Let us fix a good cover U = {U⇥} ofM . For integers p, q ⇤ 0, let us set

Kp,q = Cp(Aq|j, U), (59)

where the righthand side denotes the usual p-cochains of the sheaf Aq|j, with respect to the covering U. Then we can form
the double complex (K , d, ⇤), where K = ⇥p,q⇤0 Kp,q and the operators are the usual exterior differential operator d and the
�ech co-boundary operator ⇤. From this double complex one can construct two spectral sequences (Ep,q

r , dr) and (E
⌃p,q
r , dr)

both converging to the total cohomology HD(K) of the double complex (see [13]). We have that

Ep,q
2 = Ȟp(Hq|j

DR(A
q|j), U) = Ȟp(Mn|m, Hq|j). (60)

In particular Ep,q
2 = 0 when q > 0, therefore (Ep,q

r , dr) stabilizes at r = 2. On the other hand we have

E
⌃p,q
2 = Hq

DR(Ȟ
p(Aq|j, U)). (61)

We can easily see that the sheaves are fine i.e. that

Ȟ0(Aq|j, U) = Aq|j (62)

and

Ȟp(Aq|j, U) = 0 when p > 0. (63)
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In this computation                                is generated by the constant sheaf  
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the forms (see formulas (46) and (48)). We leave the details to the reader. Notice that H0|1

DR (P1|1, hol) is generated by the
closed form ⌅⇤(d⌅) which is globally defined on P1|1. �

Now consider a general smooth super manifoldMn|m. OnM we can define the pre-sheaf which associates to every open
subset U ⇧ M the smooth super de Rham i|j-cohomology group of Un|m and we denote the corresponding sheaf by H i|j. If
follows from the above remark thatH i|j is the constantC-sheaf when i, j = 0, a non zero sheaf when i = 0 and j > 0 and the
zero sheaf otherwise. It makes therefore sense to consider the �ech cohomology groups which we denote by Ȟp(Mn|m, H i|j)
(which are zero when i > 0). Recall that a good cover is an open covering U⇥ of M such that every non-empty finite
intersection U⇥0 � U⇥1 � · · · � U⇥p is diffeomorphic to Rn. We can now prove a generalization of the classical equivalence of
�ech and De Rham cohomology.

Theorem 9. Given a supermanifold Mn|m, for i ⇤ 0 we have the following isomorphism

Hi|j
DR(M

n|m) ⌅= Ȟi(Mn|m, H0|j). (58)

Proof. For the proofwe canuse the samemethodused in [13] for the classical equivalence of�ech andDeRhamcohomology.
Let us fix a good cover U = {U⇥} ofM . For integers p, q ⇤ 0, let us set

Kp,q = Cp(Aq|j, U), (59)

where the righthand side denotes the usual p-cochains of the sheaf Aq|j, with respect to the covering U. Then we can form
the double complex (K , d, ⇤), where K = ⇥p,q⇤0 Kp,q and the operators are the usual exterior differential operator d and the
�ech co-boundary operator ⇤. From this double complex one can construct two spectral sequences (Ep,q

r , dr) and (E
⌃p,q
r , dr)

both converging to the total cohomology HD(K) of the double complex (see [13]). We have that

Ep,q
2 = Ȟp(Hq|j

DR(A
q|j), U) = Ȟp(Mn|m, Hq|j). (60)

In particular Ep,q
2 = 0 when q > 0, therefore (Ep,q

r , dr) stabilizes at r = 2. On the other hand we have

E
⌃p,q
2 = Hq

DR(Ȟ
p(Aq|j, U)). (61)

We can easily see that the sheaves are fine i.e. that

Ȟ0(Aq|j, U) = Aq|j (62)

and

Ȟp(Aq|j, U) = 0 when p > 0. (63)



For the finite dimensional spaces ⌦(p|0)(M) ⌦(p|m)(M)

we can establish an isomorphism, namely we have the following property 

dim⌦(p|q)(M) = dim⌦(n�p|m�q)(M)

which is the Poincaré duality for the pseudo-forms. For  finite dimensional spaces it is  
easy to count the generators of these spaces, but it is also possible for infinite dimensional  
spaces since they have countable infinite number of generators.   

As in the conventional manifolds, we have  

⌦(0|0) 3 1 ! f(x)dnx✓m�

m(d✓) 2 ⌦(n|m)

namely, 1 is mapped into a top form. 



D.  Hodge operator

To define a Hodge operator we recall the equation discussed in the beginning using the BRST quartets

Introduce a set of dual variables 
p

µ $ x

µ
, ⌘

i $ ✓

i

⌦(p|q) 3 !(x, ✓, dx, d✓) ! !(x, ✓, p, ⌘)

Then we define the Hodge dual as  

?!(x, ✓, dx, d✓) = N
Z

M̃
!(x, ✓, p, ⌘)ei(p

µ
Gµ⌫dx

n+p

µ
Gµjd✓

j+⌘

i
Gi⌫dx

⌫+⌘

i
Gijd✓

j)

with the properties  

? : ⌦(p|q) ! ⌦(n�p|m�q) ?2 = ±1



The matrix ✓
Gµ⌫ Gµj

Gi⌫ Gij

◆

defines a supermetric for the supermanifold and the entries are bosonic or fermonic in order to  
respect the parity of the exponential in the definition the Hodge dual.  

In terms of it, we have the remarkable equation for a curved supermanifold  

?1 = Sdet(G)dnx�m(d✓)

As an application, given a superfield (namely a (0|0)-superform)  
�(x, ✓)

�(x, ✓) ! d�(x, ✓) ! ?d�(x, ✓) 2 ⌦(n�1|m)

And finally, we have  

S� =

Z

M
d� ^ ?d�

Wess-Zumino action plus  
high derivative terms  



In 4d the action of pure supergravity N=1 can be written as

SsugraN=1 =

Z

M
?1

SYM theory can also be written as 

SSYM =

Z

M
F (2|0) ^ ?F (2|0)

For SYM, there are some constraints to select the physical degrees of freedom, and they  
can be implemented by some differential equations.  



E.  HODGE THEORY 

As in the conventional formalism, we set  

� = ?d? : ⌦(p|q) ! ⌦(p�1|q)

what is relevant here that the operation involves passing through negative-form degree pseudo-forms.  

� = � d+ d �

In addition, we can define a Laplace-Beltrami differential 

• We have checked that for a supermetric, this produces a well-defined operator. 
• It reproduces the quadratic Casimir operator for supergroups such as PSU(n|n)  
• We have not yet analysed the Hodge theory and the relation between cohomology and harmonic forms 



F. DUALITY FOR SUPERFIELDS

By considering YM in (3|2) dimensions, we start from a (1|0)-form 

A(1|0) ! F (2|0) = dA(1|0) ! ?F (2|0) = F (1|2) 2 ⌦(1|2)

dF (1|2) = 0 ) F (1|2) = dA(0|2)
As usual, the closure of the last field strength implies that there is a (0|2)-form for the dual gauge field.  

dF (1|2) ) d ? F (2|0) = 0

dF (2|0) ) d ? F (1|2) = 0
so the closure of the field strength implies the equations of motion on the dual fields.  



Self-duality

?⌦(p|q) = ⌦(n�p|m�q)

p = n/2 , q = m/2

The condition for self-duality 

which implies that self-dual superfields live in the pseudo-integral form spaces. But they  
have an infinite number of components (this is rather similar to what happen in Open String Field Theory). 

What about Chern-Simons theory on supermanifolds.  
Let us consider (3|2)-dimensional supermanifold?  

SSCS =

Z

M
A(1|1) ^ dA(1|1)

work in collaboration with C.Maccaferri 



Conclusions

This new part of mathematics has a lot of interesting applications:  
from string theory (RNS, GS, Pure Spinors, Topological Strings…)  
to quantum field theory (Supersymmetric models, Chern-Simons on 
supermanifolds) and it is largely unexplored.   

Recently E. Witten wrote a series of papers on the subject revisiting the 
perturbation theory for superstrings, and there are several applications  
where this formalism can be used.  


