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BRST quartets vs PCO

Let us consider the following BRST quartet(@7 n, t7 b) where the Greek letters denote
anticommuting quantities and the Latin letters the commuting ones.

We assign the following transformation rules:

Qf =t Qt = 0
Qb =n, Qn =20

and we consider the following expression

Q(b0) = (QD1)0 + bQO = nb + bt
Now, we define the following integral
Y = / dbdne" 9T = / dbdn(1 + inf)e*"
= / dbfe'™ = i66(t)
This quantity has the following two properties: 1) it is BRST closed and 2) it is not exact.
Q(O(t)) =to(t) =0 Bo(t) # QL

where the distributional rules have been applied.



This quantity can be integrated w.r.t. to the variables (6’7 t)

/ dodtY =1

Y is known in the literature as Picture Changing Operator where the variables (9 t b are interpreted
as the ghost fields of RNS/Pure Spinor/Topological String theory, but it plays a fungamental role to
define a sensible integration theory on super-manifolds.

Let us generalise it: instead of a single quartet, we consider a multiplet

(6)2'7 T)i tia bZ)

with i = 1, ..,m and we can construct a PCO as a product of m PCQO’s as

— H@id(ti) = 01...0,0(t1)...6(tm)

which is invariant under any transformation of GL(m,C) of the variables g, — Aijgj 7 £ — Aijtj 7

since we have
(919m %det(A)Hlém 5(t1)5(tm)

Again the integral of Y gives 1 (with the correct normalisation).

? det(A) 5(t1) e 5(tm)



Integration on supermanitolds

Let us now move to supermanifolds. We denote by A a (njm)-dimensional supermanifold
parametrised by the local coordinates (leu7 (92-).

We introduce also the corresponding 1-forms (dwu, d@i) with the properties

dx,u ANdx, = —dx, N dﬂiu dmu A\ d@z — d(gz /N\ dil?lu d@z A d(gj — dHJ A d(gz

Then a generic (super) form has the form

k=p,l=q
W= Y Wiy A A Adat AT A A B
k=1,1=1

where the components Wiy ...pux](i1...47) (% 9) are functions of the manifold coordinates. The
indices (41 - - - Hx] are antisymmetrized while (21 . . . 1] Jare symmetrized. The total form degree is
fixed by the p + g, summing the form degree of the bosonic coordinates and the form degree of the

fermionic ones.

This implies that there is no upper bound to the form degree and there is no top form.



How to define a sensible theory of integration of differential forms on supermanifolds?
How to define de Rham/Cech cohomology in the space of superforms?

How to construct the Poincaré duality in the space of superforms?

o 0 w »

How to define a Hodge operator?

[

How to construct the Hodge theory for a supermanifold?

We answer to all of these questions and apply the results for

1. Constructing new supersymmetric actions with higher-derivative terms

2. Constructing the Hodge dualities for superfields



A. Integration of Forms on Supermanifolds

Let us begin with a conventional manifold M with dimension = n, given a generic differential form

we N* (M)
This is a section of the exterior bundle and it can be decomposed as
w=w +wl+w+ 4"

where the last term is the top form element. Locally it can be written as

Zw or(x)dabt L dxte

and its integral on the manifold is

/M “T /f(a:)d"g;, F(@) = VWi .o,y ()t Hr

where the second member is a Lebesgue/Riemann integral of the function built in terms of the components
of the degree n term of the differential form. This integral can be view from a more algebraic way by
introducing a set of anti-commuting variables @bu rewriting the diff. form as function in a superspace

Zw ()t .. s



and its integral is defined as

where the integral over the anticommuting coordinates is performed by usual Berezin integral. The
measure for the r.h.s. is sometimes written as [d”ajd”w] (where | neglect details for curved spaces).

Let us move to supermanifolds. A superform for a supermanifold is written as

W= Wiy (1) (T, O)dTHT Ao Adahe NdO A A dB's
p,q

and we can apply the same strategy. First we promote the bosonic 1-forms to anticommuting variables and
second, we promote the fermonic 1-forms to commuting variables

dxt — ¥, df* — t!

and finally we would like to use the same definition of the integral as above by
considering the superform () as a function on this new superspace w(gc, 9, ¢, t)

The integrals over the fermionic coordinates are Berezin integrals, over the x-coordinates is the usual
Lebesgue/Riemann integral, but the integral over t is not well defined on the superforms.



One way to solve this issue is to construct the new form
m
w(w, 0,9, 1) = w(z,0,9,t) | [ 076(t")
1=1

by multiplying it by the PCO! This leads to a new quantity: an INTEGRAL FORM as

winlm) — wn(x,0) Hé’z tz

where n = form degree and m = picture number

For the Dirac delta functions we assume the following properties (distributional properties)
5() A S(H)

t8 (1)

£ 5 (¢4

—5(t7) A 6(t)
0
_5(n—1)(ti)



Now a generic (pseudo)-form can be written as

w = Z Wl o] (i1 i) firg s in] (T 0) AT Ao Adzhe AdO A - AdOT N S(dOTT) A - A B(dO™)

p7T78

each pieces are differential forms with fixed form degree = p + r and picture number =s -r

There is an additional detail that we can add: we should also admit derivatives of the Dirac delta functions

)
5(P) (do")
and they have picture number = +1 but form degree = - p. They have negative form numbers!!

A generic (p|q) form is written in terms of

dmu/\.../\dgi.../\g(p)(d(gj)

and we denote by Q(p|q) (,/\/l) the space of pseudo-forms. For g=0, we have the well-known
superforms, for g=m we have the integral forms and for O< g<m, we have the space of pseudo-forms.



B. Cohomology

Now we have the following complexes

0 — Q10 _ o) _y . _ Onl0) __, qltljo)

where all spaces are finite dimensional. The complex is not bounded from above. The differential d acts
along the arrows.

o Ql2m) L (=1m) . glalm) _ g

this is the complex of integral forms. It is unbounded from below, but it is bounded from above. The

last space is the/space of top forms. Notice that since we have maximum number of delta’s, there is
no room for d@’ s

Then finally we have

/ @:/ w[ul...un][il...im](x,Q)EM---unez‘l...z‘m
M M



There are additional complexes of the form:

o020 o=t L s ol

which is not bounded from above nor from below. In addition, each single space is infinite dimensional
space and the geometry of them is completely unknown.

In summary, we have

0 -4 | Qoo 4, el ... _d omlo) | _d, o@m+io) ..
2] 211y 21y 211y Ly
QC-1s) _d, | qols) _d, ... q@ls) ... _d, qomls) | _4, omtlls) |

A |1 ALy Al L

Q1) 4, | on) _4, . qCln) ... 4, omn) | _4,

The operators Y and Z are known as Picture Changing Operators and act vertically in the complexes.



These two operators (the expression of Z is rather complicate and it is not displayed)
are d-closed and they are not d-exact. The Y operators are elements of the cohomology

HO™) (M)

This implies that given a pseudo form (p|g) and multiplying itby a PCO Y, = 9i5(d9i)
we have

Y; : H(p|CI)(M) N H(p|q+1)(M)

This observation implies that if there were cohomology in a given space,

this can be mapped into a space with another picture.Since

the two complexes (P19 (Af) and Qplm) (M) are either bounded from
below or from above, this means that there is no cohomology below and above.

So, the cohomology is entirely contained into the square
bounded by the 0-forms with 0 pictures and
from the integral forms with n form degree and m picture.



Cech cohomology of P!

IS the simplest non-trivial example of super projective space. It is

CP(1|1) defined as usual as an algebraic variety by quotient the
complex superspace C2I' with respect to a complex number

different from zero. It can be covered by two patches.

Transition functions from one patch to another
Uo = {[20; z1] € P' : 25 # 0}, 1
_ _ 1 dj ()/) — ~
U]Z{_ZO;Z1_ cP ZZ]#O}. )4

‘<2|$2

O™ () =

The change of patch reflects upon the following transformation

&*§"(dy) = y 18" (dyr) — ¥y dy $"T(dy).



Results for cohomology

For non-negative integer

HO(P”] Qnm) ~ {O, n> 0, I\:Il(:P)]“, Qn|0) ~ C4n

C, n=0.
1,11 =11y ~
HO (P, ity o gdn+4 P, 27" =,
T, @y = ¢,

HO(P'!, @11y = 0,

Notice that H(P!I1, 27*+119) and HO (P!, 2-"1) have the same dimension.

I\-/I](IP)”], Qn+1|0) % IZIO(IP)”], Q—nll) — FIl(IP1|1, _Qlll) ~



Super de Rham cohomology

1. d behaves as a differential on functions;
2. d* =0:

3. d commutes with § and its derivatives, and so d(§ ¥ (dy/)) = 0.

For n > 0, the holomorphic de Rham cohomology groups of P! are as follows:

nIO 111 ~ }0, n>Q0,
r (P, hol) = {(C, n—0.

—nll 1)1 0, n>Q0,
Hpg (P hD_{Q n=0.

Hok (P hol) = 0.

In this computation HDR ([Pﬂ“ , ho]) is generated by the constant sheaf

Yo(dy)



For the finite dimensional spaces QP19 (A1) Q(plm)(./\/l)

we can establish an isomorphism, namely we have the following property

dim O (la) (M) = dim O(n—p|m—q) (M)

which is the Poincaré duality for the pseudo-forms. For finite dimensional spaces it is
easy to count the generators of these spaces, but it is also possible for infinite dimensional
spaces since they have countable infinite number of generators.

As in the conventional manifolds, we have
QO 51 - f(z)d"z0™6™(d9) € QM)

namely, 1is mapped into a top form.



D. Hodge operator

To define a Hodge operator we recall the equation discussed in the beginning using the BRST quartets

Introduce a set of dual variables p,u <> Qi"u, 7’}2 0

Orla) 5 w(x,0,dx,df) — w(z,0,p,n)

Then we define the Hodge dual as

(p" "y ph G, dOT 0t Gy, dat 1t Gy d6?
*w(x, 0, dr, db) :/\//~ w(z, 0, p, n)e " Guvda™ +p¥ Guydo? +n" Gy da” +n' Gy d67)
M

with the properties

% : Ol _ (n—plm—q) *2 — +1



The matrix
GW Guj
G G j

defines a supermetric for the supermanifold and the entries are bosonic or fermonic in order to
respect the parity of the exponential in the definition the Hodge dual.

In terms of it, we have the remarkable equation for a curved supermanifold

«1 = Sdet(G)d" 6™ (d6)

As an application, given a superfield (namely a (0|0)-superform) Qb(% (9)
o(x,0) = do(x,0) — *do(x,0) € Qn—tm)
And finally, we have

Wess-Zumino action plus

Sa — / d¢ N\ *d¢ high derivative terms
M



In 4d the action of pure supergravity N=1 can be written as

SsugraNzl — *1
M

SYM theory can also be written as

Sev s :/ F10) A 4 F(200)
M

For SYM, there are some constraints to select the physical degrees of freedom, and they
can be implemented by some differential equations.



E. HODGE THEORY

As in the conventional formalism, we set

5 = xdx - QPld) _y lr—1lg)

what is relevant here that the operation involves passing through negative-form degree pseudo-forms.

In addition, we can define a Laplace-Beltrami differential

A=o0d+do

e \We have checked that for a supermetric, this produces a well-defined operator.
e |t reproduces the quadratic Casimir operator for supergroups such as PSU(n|n)
e \We have not yet analysed the Hodge theory and the relation between cohomology and harmonic forms



F. DUALITY FOR SUPERFIELDS

By considering YM in (3|2) dimensions, we start from a (1|0)-form
A010) _y p20) — 74010 _y  p(2l0) — p(2) ¢ o12)
As usual, the closure of the last field strength implies that there is a (0|2)-form for the dual gauge field.
JF12) — o = pl2) — 7400/2)
dF12) = g« FEO =g
dF©0 = % FU12) =

so the closure of the field strength implies the equations of motion on the dual fields.



Selt-duality

The condition for self-duality
LOle) — n—plm—q)
p=n/2, qg=m/2

which implies that self-dual superfields live in the pseudo-integral form spaces. But they
have an infinite number of components (this is rather similar to what happen in Open String Field Theory).

What about Chern-Simons theory on supermanifolds.
Let us consider (3|2)-dimensional supermanifold?

Seca = | AL A g4
M

work in collaboration with C.Maccaferri



Conclusions

This new part of mathematics has a lot of interesting applications:
from string theory (RNS, GS, Pure Spinors, Topological Strings...)

to quantum field theory (Supersymmetric models, Chern-Simons on
supermanifolds) and it is largely unexplored.

Recently E. Witten wrote a series of papers on the subject revisiting the

perturbation theory for superstrings, and there are several applications
where this formalism can be used.



