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Charge transport in real materials
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m Materials with charged d.o.f. can be

m Coherent metals with a well defined Drude peak
m Insulators
m Incoherent conductors of electricity

m Interactions expected to become important in the incoherent
phase — Possible description in AdS/CFT?



The Cuprates
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The Cuprates are real life example of :
m Incoherent transport

m Anomalous scaling of conductivity and Hall angle with T’
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Perfect Holographic Conductor

Do it in D = 4 Einstein-Maxwell with AdS asymptotics:

1
[,EM:R—ZFMVF“U-I-IZ

ds? = —U(r)dt* + U(r) " dr? 4 2 (dx% + dm%)
A=a(r)dt

=1

Background black hole has temperature 1", energy F, pressure P,
entropy s and charge ¢.



Classical Drude model
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m Without collisions 7 — 00 = 0 =



Classical Drude model

Don't need quasi-particles to have
Drude physics.

Coherent metals arise when mo-
mentum relaxation is slow with Re w
dominant pole on real axis.
[Hartnoll, Hofman]
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Fourier/Ohm law

m Apart from electric currents we have a thermal current
Qi —_ Tti o MJZ

m Transport coefficients are packaged in Ohm/Fourier law

(cjz):<aUT i§><_<v?)/T>

m With VT a temperature gradient



Holographic Lattice

AdSQ X R2 AdS4

r=r4 r =400
X

To add momentum dissipation introduce a UV - IR benign lattice:

m Keep UV fixed point = relevant deformation O(z)
m Drude physics = T' = 0 horizon restores translations

m Charge density is a universal relevant operator = Impose
Av=p(@) = JH (@) r7t 4
[Hartnoll, Hofman][Horowitz, Santos, Tong][AD, Gauntlett]
p(@) =po+ Az), (A), =0

m /9 = chemical potential, A’(x) = periodic electric field



Inhomogeneous Lattices
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m Drude peaks are there

m Get rid of them!
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RG/Holographic picture

I\ /I {7

AdSy x R?, HSV, ...

| Charge dominated RG flows, translations restored in IR —
Coherent transport

[l Lattice dominated RG flows, translations broken in IR —
Incoherent transport
[AD, Hartnoll] [AD, Gauntlett]



Q-lattices

Consider a simple model with a global U(1) in addition to the
gauged one [AD, Gauntlett]

1
5= / ol [R+ 6~ 4 F? — |06f —m? |of
along with the ansatz

ds? = —U(r)dt? + U(r) " dr? + 21 () dag? 4 €2%2() qg2
A =a(r)dt, ¢ = et (1)

Leads to ODEs both for background and perturbation
m Two real scalars with O1 ~ cos(kz), Os ~ sin(kx)

m RN still a solution

Lattice operator relevant for k < k.



Conductivity from Q-lattices
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m Can model Metal - Insulator transitions

m Similar story for inhomogeneous lattices
[Rangamani, Rozali, Smyth]



More general Q-lattices

Consider more general situation where

L=R-; [00)+ 1 () (0x1)* + B2 (¢) (O

+V(<p)—ZEfO)F2

The background is then
ds? = —U(r)dt? + U(r) "t dr? + €21 () dg? 4 ¢2V2(1) gg2
A=a(r)dt, ¢=p(r)
X1 =kizi, x2=khkaxz

Rich class of new ground states that break translations
m Insulators

m Novel metals



Ohm/Fourier Law

m Perturbative argument to determine horizon at low T’

m Analytic argument to express DC transport coefficients in
terms of bh horizon data

Z(p)s N dmg?
etk ?®1()s

- [ AnsT ] N - [ drq ]
DC — |7 95+ 5 DC — DC — | 7 95+ /.~
k1*®1(9)],_,, k1’®1(9) ],

ODC = |: :| = Oces + Odis
r=r4

m Conductivity can be dominated by either o..s or gy;s
m Notice that

Occs = 0Q=0 =0 —Tak 'a



Hall angle [aD, Biake]

Can include background magnetic field B
m For B2 << T << p

B 5_
O < — aﬁ;o
q

B=0

=0
Opc — Uccs +Gdzs

It is possible to have
B 5

B=0 B=0
ODC X Oces

Not possible to get with weakly coupled fermions.



DC conductivities from BH horizons

m Poweful
m Reveal interesting physics

m Have been found for more examples of homogeneous lattices

e.g. Bianchi VI
[Igbal, Liu] [Blake, Tong] [Andrade, Withers] [Gouteraux] [AD, Gauntlett]
[AD, Gouteraux, Kiritsis] [AD, Gauntlett, Pantelidoul]

m Where do they come from?



DC conductivities from BH horizons

m Back to Einstein-Maxwell

m Consider electrically charged, static black branes

F
ds* = —UGdt’ + 7 dr® +ds*(Ya), A= apdt
ds*(Zq) = gij(r, x)dz'dx’

m Asymptotically, 7 — oo

U—r? F—-1  G-G@),

gij(r,x) — r2§ij(as), ay(r,z) — p(x).



DC conductivities from BH horizons

For the perturbation write

5(ds?) = 8gu (1, x)datdz” — 2tGU;dtdx’
0A = day(r, z)dx" — tE;dzt + ta,(dat

E(x%) and ((2°) are closed forms

( is boundary temperature gradient

m F is boundary electric field

Count functions:

m g — 3 (d+2)(d+3) — (d+2) functions
m A, = (d+2)— 1 functions



Radial Hamiltonian

m Imagine radial foliation by hypersurfaces e.g. normal to 0,

m Radial evolution Hamiltonian is sum of constraints

Hy, =NH+N,H"+ DG +h.t.

m At infinity they yield Ward identities
Vi (T®)y=F™ (],),  V,(J%=0, (T*,)=anom

m Meaningful but not closed system without hydro



DC conductivities from BH horizons

Examine constraints close to the horizon

m Define
v; = 5gg)), w = 5@%0) ,
3y 0) ij 0
p = 47T G(ré) + g, g(é)vj In G©
m To find
H = Vo' =0

HI = 2 viv(i vjy — ago)vjw —Vip=4rT(; + ago)Ej
G= YViw-1' Viago) =_V,E"

m Solve for a Stokes flow on the curved black hole horizon
m Nowhere made hydro assumptions!



Hydro temptation

m Meaningful quantities are
Q = VOIC;1 / 2 /g(o) ago), S = VO];1 / 47 \/%

m Very tempting to think of it as
v,ﬂ}i =0
2n ViV(Z- vjy — pViou—sV;idT =Ts(+pE;
V20 — v Vip = =V, E°

m Looks like first order hydro
m But, is there a fluid?



DC conductivities from BH horizons

Electric Current
Define

J’i _ \/ngZ’r‘

m At r — oo gives field theory current densities

m Anywhere in the bulk

Il =0, 9.0 =08 (V—gF’)



DC conductivities from BH horizons

Heat Current
Let £ = 0; and define

G = oVl —glepvloa, 1 (p—g) PP
Let

Q' = V=4G"

m At r — oo gives field theory heat current densities
Q' = —(6T") — p (3J%)
m Anywhere in the bulk

Q' =0,  8,Q =-0; (2y—gG%)



DC conductivities from BH horizons

m Solutions for v, w and p are uniquely fixed by sources E and ¢
m Then

- o (O'w + E*) + po*
Qi|'r:7'h =Ts Ui’ s=dm 94y, P =+/9(0) CLgO)

m Exploit

O J = 9; (V—gF'"), 0,Q" = —0; (2y/—9gG")

m To find field theory currents J and Q° in e.g. d = 2

le/dx2J1, JQ:/dxlﬂ

m Conductivities determined solely by BH horizon data!



DC conductivities from BH horizons

Examples
m Can recover earlier results for e.g. Q-lattices and 1-dim lattices

m Perturbative, periodic lattices about AdS-RN black brane
Let A be the expansion parameter
The black hole horizon is a small expansion about flat space

Joyis = 905 + ARG + A2 + -
aﬁo) =a+ Aa() +)\2a(2) 4.

GO — foy+ A fay + -+

Solve Navier-Stokes perturbatively in A



DC conductivities from BH horizons

At leading order in A we find
Gy s
Qjj = Qjj = )\2 drp+ ..., ’_{z’j:vLLWST“‘---
Li_jl 47 p?
A2 s

O’ij =

Where Li; = [} Z]< e (1)>

Consistent with memory matrix formalism
[Barkeshli,Hartnol,Mahajan]

Other applications?

m Conductivity bounds: e.g. [Lucas, Sachdev, Schalm]

m Random geometries: e.g. [Hartnoll, Santos, Ramirez]



Summary / Outlook

m Holography is a tool to study transport in strongly coupled
systems

m No assumption of quasiparticles
m Understand better the physics of the new ground states

m Fluid/gravity can be used to obtain DC thermoelectric
conductivities

m Connection with fluid/gravity beyond DC?
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