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MISSED OPPORTUNITIES!

BY FREEMAN J. DYSON

It is important for him who wants to discover not to confine him-
self to one chapter of science, but to keep in touch with various others.
JACQUES HADAMARD

A tale of two scientific quests - integrable QFT
models and the classification of Riemannian

manifolds, another chapter in Dyson’s “MISSED
OPPORTUNITIES® ?
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The renormalization of two-dim nonlinear “Sigma-

model”, integrable deformations and TBA (Fateev and
Al.B.Zamolodchikov)

The proof of Poincaré’s conjecture after 100 years
(Grisha Perelman)

At the end, a personal recollection involving Carlo Maria




§ The study of the “nonlinear sigma model” started in the 70s thanks to
' Polyakov, Esker-Honenkamp, and the Saclay school, |
Brezin, Zinn-Justin, Le Grillou.

Our story however starts with Dan Friedan, 1980:
“Nonlinear Models in 2+€ Dimensions”, PRL 45 (1980) o
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The field P takes values in the “target space M” a compact

2-dim Riemannian manitold. Path mtegral quantlzatlon leads to

a regular:zecl QFT. The * Couplmg gii, under renormalizazion
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Full detail is found in

Friedan'’s PhD Thesis, which

appeared only in_1985 on
Annals of Physics, this is the

favorite quotation in the
Math literature,probably

because it appeared after
Hamilton s paper? More later

on...
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1. Introduction

Our goal in this paper is to prove the following result.

L1 Main Theorem. Let X be a compact 3-manifold which admits a Rieman-
nian metric with strictly positive Ricci curvature. Then X also admits a metric of
“onstant positive curvature.

All manifolds of constant curvature have been completely classified by Weoll
1. For positive curvature in dimension three there is a pleasant varicty ok
“amples, of which the best known are the lens spaces Ly, Wolf gves five

\
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- Developments: Fateev and Zamolodchikov analized
the Problem of quantizing the nonlinear sigma~mode|
identhcging it with a class of “Factorized Scattering
Aml:)htucles” via Bethe Ansatz techniclues. Theg
introduced a class of exact solutions to the RG
cquation) the so-called “Sausage solutions” which are

conjectured to act as “attractors” in the RG How.

» Belardinelli, Destri and mgseH: studied the RG equation

numerica”g to find that the sausage solutions actua”g

act as attractors in the space of metrics.
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The numerical integration aPPlics to a simpliﬁecl form of

the RG equation, obtained by sPecializing the metric to

a conformal one, gii= eA® §; which Hielcls (x€S2) a sort

of “clgnamical Liouville equation”

OA(z) —A(z)
5 : A(@)




D@Corming the sausage N an arbitrarg way

Fig. 4. A pictorial way of illustrating the attractive nature of the sausage solution.

C)(2) sgmmetric geometry evol\/es toward

A symmetry through the sausage.
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Our numerical code was insPirecl to the general idea of
“spcctral methods” in Partial differential equations: the
idea is to represent Par‘cial differential operators using
sPectral transforms, like Fourier, in such a way that one
never uses finite differences aPProximations. This is
Particularlg useful Working on surfaces where Cartesian
coordinates are not aPProPriate. The Laplace operator on
S is then rePresentecJ algebraicang bg using a spherical
harmonics transform. This made feasible also exploring
two—-lool:) RG equation with terms (AN)”. The program was
entirelg realized in Matlab and it’s still aPPIicable.
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to test tl"lé correctness

5 of the code

| My, ¢) = —log (a(t) + b(t) cosh(2y))

@il = Lrcoth (% (o = t))
v/sinh (5=v(to —t))
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din g su rface with
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« another view of
e corresporn
Minkowski metric:
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+ Hamilton’s Ricci equation (1982)

Richard Hamilton starts a new chal:)ter N

Ditferential Geometry and Tol:)ologg by

ntroducinga flow in the space of all metrics

generatecl bg the equa‘cion

dgij

q — —QRij
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1. Introduction

Our goal in this paper is to prove the following result.

L1 Main Theorem. Let X be a compact 3-manifold which admits a Rieman-
nian metric with strictly positive Ricci curvature. Then X also admits a metric of
constant positive curvature.

All manifolds of constant curvature have been completely classified by Wolf
b1. For positive curvature in dimension three there is a pleasant variety of
amples, of which the best known are the lens spaces Ly g Wolf gives five

Recej
eeived December 21, 1981,

the so-called “Ricci equation”; this can be made a

rigorous tool to explore the classification Problem
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There followed an explosion of activities, documented in the

mathematical literature -just try googlc, asking for “Ricci flow”,
you will be overwhelmed bg a massive amount of papers, difficult
to master for a non-mathematician. This movement culminated in
a rather unexl:)ectecl way and in full glorg with Perelman’s l:)t‘ocnC
of Poincaré’s conjecture. Review papers, books both technical

and ex]:)ositorg aPPeared in recent times. Just see

B.Chow and D.Knopf, “The Ricci flow, an introduction’,

AMS, 2004

D. O’Shea, “The Poincaré conjecture’,
W&Co, 2007
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o What | find rather astonishing is that in the era of internet with

communication running at the speecl of light Theoretical

F’hgsicists and Mathematicians have remained unaware for so

|ong o1C each other egorts. For instance the convergence 01(:

: 2 = :
any metricon S to the constant curvature metric 1s contamecl

as o special case in one of the theorems which you may find in

Chow’s papers. It'’s true, Mathematics Procluc

CS VCT’H gcneral

resuits oFten too general 1Cor the sake cnc Phgsics. B2 werlt o

long way In &eriving any single detail of the QFT of the

nonlinear 5igma~mocle|, spectral results whic

11 are Oﬂ|9

c]ualitativelg contained in Perelman’s papers. 2

his is what |

regard as a candiate for a sequel of Dgson’s “Missed

OPPortunities”.
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Now we can see some briclges laid down - for

instance papers bg . Bakas and G. Car‘:ora, to

which | rcncer you for grcalcn detail. In Cﬁow~KnoP1C
book reference is made to “Witten’s black hole” or
“cigar solution” to the RE. So some barriers are

Fa”ing.

L et me end now with a Personal reco”ection omc a

conversation | had ong time ago with Carlo

Maria.

1
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» Carlo sl:)ent a couple of dags in Trento, where | served as a
newlg aPPointecl Progessor ancl sPent some Fruit{:ul years

in the late ‘80s. In a Private conversation he expressecl the

idea that one should study the evolution of the metric in the

.

sigma model starting from deformed geometries, “something
like potatoes” ... | could not benefit much from Carlo |

suggestion, since | was tota”g ignorant at the time (and
still now...) but | remembered his observation when | was
involved in the “sausage” &Hnamics bﬂ \/oloclga Fateev. 50,

young men (ancl madams} listen to Carlo!

s “Potato Phgsics” aPPeared in C. Becchi and C.Imbimbo,

Nucl.Phys.B462, 1996, 571, but beware: it’s not light reading after dinner-...
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