Results from the PAMELA Experiment after nine years of cosmic ray investigation

F.S. Cafagna, INFN (Italian Institute for Nuclear Physics) Bari Unit On behalf of the PAMELA Collaboration

CRIS 2015

Cosmic Ray International Seminar 2015

PAMELA Collaboration

PAMELA Collaboration

Moscow / St. Petersburg

2

INFN 3

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

GF:	21.5 cm ² sr	
Mass:	470 kg	
Size:	130x70x70 cm ³	
Power	Budget:	360W

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

PAMELA: the integration

•

- Multi-spectral remote sensing of earth's surface
 - → near-real-time high-quality images

- Multi-spectral remote sensing of earth's surface
 - → near-real-time high-quality images
- Built by the Space factory TsSKB Progress in Samara (Russia)

- Multi-spectral remote sensing of earth's surface
 - → near-real-time high-quality images
- Built by the Space factory TsSKB Progress in Samara (Russia)
- Operational orbit parameters:
 - inclination ~70°
 - altitude ~ 350-600 km (elliptical)

- Multi-spectral remote sensing of earth's surface
 - → near-real-time high-quality images
- Built by the Space factory TsSKB Progress in Samara (Russia)
- Operational orbit parameters:
 - inclination ~70°
 - altitude ~ 350-600 km (elliptical)
- Active life >3 years

- Multi-spectral remote sensing of earth's surface
 - → near-real-time high-quality images
- Built by the Space factory TsSKB Progress in Samara (Russia)
- Operational orbit parameters:
 - inclination ~70°
 - altitude ~ 350-600 km (elliptical)
- Active life >3 years

- Multi-spectral remote sensing of earth's surface
 - → near-real-time high-quality images
- Built by the Space factory TsSKB Progress in Samara (Russia)
 - Operational orbit parameters:
 - inclination ~70°
 - altitude ~ 350-600 km (elliptical)
 - Active life >3 years

PAMELA: in the satellite

PaMéLa

PAMELA: in the satellite

F.S. Cafagna, CRIS 2015, 1411 Sept. Jors

PaMéLa

 Launch from Baikonur: June 15th 2006, 0800 UTC. Power On: June 21st 2006, 0300 UTC. Detectors operated as expected after launch

- Launch from Baikonur: June 15th 2006, 0800 UTC. Power On: June 21st 2006, 0300 UTC. Detectors operated as expected after launch
- PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006

- Launch from Baikonur: June 15th 2006, 0800 UTC. Power On: June 21st 2006, 0300 UTC. Detectors operated as expected after launch
- PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006

>9 year of data taking (~75% live-time)

- Launch from Baikonur: June 15th 2006, 0800 UTC. Power On: June 21st 2006, 0300 UTC. Detectors operated as expected after launch
- PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006
 - >9 year of data taking (~75% live-time)
 - >50 TByte of raw data downlinked

- Launch from Baikonur: June 15th 2006, 0800 UTC. Power On: June 21st 2006, 0300 UTC. Detectors operated as expected after launch
- PAMELA in continuous data-taking mode since commissioning phase ended on July 11th 2006
 - >9 year of data taking (~75% live-time)
 - >50 TByte of raw data downlinked
 - >7x10⁹ triggers recorded and under analysis

 Thanks to the PAMELA orbit we are able to measure different particle and antiparticle families.

10

PAMELA Science checklist

Provide new high precision data about CR primary and secondary fluxes, to constrain on current acceleration and diffusion models of cosmic rays in the Galaxy;

- Provide new high precision data about CR primary and secondary fluxes, to constrain on current acceleration and diffusion models of cosmic rays in the Galaxy;
- Search for signatures of exotic processes connected to the Dark Matter problem;

- Provide new high precision data about CR primary and secondary fluxes, to constrain on current acceleration and diffusion models of cosmic rays in the Galaxy;
- Search for signatures of exotic processes connected to the Dark Matter problem;
- Help solving the cosmological problem about the existence of the apparent asymmetry between matter and antimatter;

- Provide new high precision data about CR primary and secondary fluxes, to constrain on current acceleration and diffusion models of cosmic rays in the Galaxy;
- Search for signatures of exotic processes connected to the Dark Matter problem;
- Help solving the cosmological problem about the existence of the apparent asymmetry between matter and antimatter;
- Investigating the heliosphere and Earth magnetosphere.

The PAMELA Mission: Heralding a new era in precision cosmic ray physics

O, Adriani ^{a,b}, G,C, Barbarino^{c,d}, G,A, Bazilevskaya^e, R, Bellotti ^{f,g}, M, Boezio^h, EA, Bogomolovⁱ, M, Bongi ^{a,b}, V, Bonvicini^h, S, Bottai^b, A, Bruno^{f,g}, F, Cafagna^g, D, Campana^d, R, Carbone^{d,h}, P, Carlsonj^{i,k}, M, Casolino¹, G, Castellini^m, M,P, De Pascale^{l,n,1}, C, De Santis^{1,n}, N, De Simone¹, V, Di Felice¹, V, Formato^{h,p}, A,M, Galper^P, U, Giaccari^d, A,V, Karelin^P, M,D, Kheymits^P, S,V, Koldashov^P, S, Koldobskiy^P, S,Yu, Krut'kov¹, A,N, Kvashnin^e, A, Leonov^P, V, Malakhov^P, L, Marcelliⁿ, M, Martucci^{n,q}, A,G, Mayorov^P, W, Menn^T, V,V, Mikhailov^P, E, Mocchiutti^h, A, Monaco^{f,g}, N, Mori^{a,b}, R, Munini^{h,j,k,p}, N, Nikonov^{1,l,n}, G, Osteria^d, P, Papini^b, M, Pearce^{j,k}, P, Picozza^{1,n,k}, C, Pizzolotto^{h,s,t}, M, Ricci^q, S,B, Ricciarini^{b,m}, L, Rossetto^{j,k}, R, Sarkar^h, M, Simon^r, R, Sparvoli^{1,n}, P, Spillantini^{a,b}, Y,I, Stozhkov^e, A, Vacchi^h, E, Vannuccini^b, G,I, Vasilyevⁱ, S,A, Voronov^P, J, Wu^{j,k,u}, Y,T, Yurkin^P, G, Zampa^h, N, Zampa^h, V,G, Zverev^P

vielo

- Large flux range, from 10⁻⁷ to 10⁷ (m² s sr GeV)⁻¹
- "Large" energy range, from .5 to 1000 TeV.
- Several measurements with the same detector.

 Measurement of spectra from different particle families requires different approaches in systematics treatment and evaluation.

- Measurement of spectra from different particle families requires different approaches in systematics treatment and evaluation.
- Small features in spectra of high statistic particles fluxes, like H, He and e⁻, can be hint of new astrophysical effects.

- Measurement of spectra from different particle families requires different approaches in systematics treatment and evaluation.
- Small features in spectra of high statistic particles fluxes, like H, He and e⁻, can be hint of new astrophysical effects.
- As well as distortions in the spectra of the more rare antiparticle can be indicators of not standard sources of antimatter.

17

Antiproton Flux

Antiproton Flux

Antiproton Flux

Adriani et al. , Nature 458 (2009) 607 Adriani et al., AP 34 (2010) 1

Adriani et al., Nature 458 (2009) 607 Adriani et al., AP 34 (2010) 1

Adriani et al. , Nature 458 (2009) 607 Adriani et al., AP 34 (2010) 1

Adriani et al., Nature 458 (2009) 607 Adriani et al., AP 34 (2010) 1

The latest (still) puzzling picture

The latest (still) puzzling picture

The latest (still) puzzling picture

Antinuclei & SQM

PAMELA e⁺ spectra Adriani et al., PRL 111 081102

'd MèLd

N

(2013)

PAMELA e⁺ spectra

PAMELA e⁺ spectra

PAMELA Electron (e⁻) flux

Adriani et al., Phys. Rev. Lett. 106, 201101 (2011)

PAMELA Electron (e⁻) flux

F.S. Cafagna, CRIS 2015, 14th Sept. 2015

26

PAMELA Electron (e⁻) flux

F.S. Cafagna, CRIS 2015, 14th Sept. 2015

26

e⁺ & e⁻ anisotropy

Electrons R > 10 GV

- Deviations from single power law (SPL):
 - Spectra gradually soften in the range 30÷230GV
 - Spectral hardening @ R~235GV $\Delta\gamma$ ~0.2÷0.3

- Deviations from single power law (SPL):
 - Spectra gradually soften in the range 30÷230GV
 - Spectral hardening @ R~235GV $\Delta\gamma$ ~0.2÷0.3
- SPL is rejected at 98% CL

- Deviations from single power law (SPL):
 - Spectra gradually soften in the range 30÷230GV
 - Spectral hardening @ R~235GV $\Delta\gamma$ ~0.2÷0.3
- SPL is rejected at 98% CL
- Origin of the structures?
 - At the sources: multipopulations, non-linear DSA.
 - Propagation effects.

PAMELA Galactic H

PAMELA Galactic H

PAMELA Galactic He

F.S. Cafagna, CRIS 2015, 14th Sept. 2015

31

PAMELA Galactic He

MeLa

F.S. Cafagna, CRIS 2015, 14th Sept. 2015

31

PAMELA B & C fluxes and ratio

PAMELA Li & Be fluxes

PAMELA Li & Be ratio

PAMELA H & He Isotopes

²H/¹H and ³He/⁴He are complimentary to B/C measurements in constraining propagation models (Coste et al., A&A 539 (2012) A88)

PAMELA Li & Be Isotopes

Lithium

Beryllium

Mass (amu)

Ratio ⁷Li / ⁶Li

ToF 1.90 GV < R < 2.10 GV 1.90 GV < R < 2.1

⁷Be / (⁹Be + ¹⁰Be)

Heliospheric conditions during PAMELA observations

Maximum Inclination of the Current Sheet (N-S Mean): 1976-2015

Computed HCS tilt angle

From: http://wso.stanford.edu

PAMELA observations covers ~ one solar cycle

Solid=Classic PFSS Model (preferred)

Time dependance of the proton flux

Энергия, ГэВ

fraction from July 2006. Positron energy: 1.2 GeV

SEP events (SEP from 2006 Dec. 13th)

INFN

Adriani et al. - ApJ 742 102, 2011

Preliminary PAMELA SEP Spectra

PAMELA bridges the gap between low energy spacebased and ground--based measurements to obtain a complete spectrum

During 2012 May 17th event PAMELA observed 2 energy components with different pitch angle distribution:

- High rigidity component consistent with NM where particles are field aligned -> Beam width ~40-60° (not scattered)
- Low rigidity component shows significant scattering for pitch angles ~90°
- For both populations to arrive at Earth simultaneously and soon after onset of the event (~ 8 minutes) the scattering must take place locally

Adriani et al., ApJL 801 (2015) L3

Under cut-off (anti)particles

- Thanks to the semi-polar (70 deg inclination) and elliptical (350-610 km altitude) satellite orbit, PAMELA is able to perform energy spectra and particle composition measurements in different regions of the terrestrial magnetosphere.
- Clear separation of the trapped, untrapped and semi-trapped components in the lower magnetosphere and SAA.

Under-cutoff proton candidates distribution as a function of L-shell and geomagnetic field intensity B [G].

Antiproton trapped in the SAA

Antiproton trapped in the SAA

Antiproton trapped in the SAA

Geomagnetically trapped and albedo protons

Adriani et al., ApJL 799 (2015) L4

Geomagnetically trapped and albedo protons

Adriani et al., JGR A120 (2015) 3728

Conclusions

- With PAMELA we are entered in the new era of precision measurements of (anti)particle fluxes in CR.
- PAMELA has been in orbit and studying cosmic rays for almost 9 years. Its operation time will continue until end 2015, possibly until end of current solar cycle.
- What has been done:
 - Antiproton energy spectrum and ratio Measured up to ~300 GeV. No significant deviations from secondary production expectations.
 - High energy positron fraction (>10 GeV) Measured up to ~300 GeV. Increases significantly (and unexpectedly!) with energy. • Primary source?
 - Positron flux -> Consistent with a new primary source.
 - Anisotropy studies: no evidence of anisotropy.
 - AntiHe/He ratio: broader energy range ever achieved.
 - H and He absolute fluxes Measured up to \sim 1.2 TV. Complex spectral structures observed (spectral hardening at \sim 200 GV).
 - H and He isotope fluxes and ratio -> most complete measurements so far.
 - Electron (e-) absolute flux -> Measured up to ~600 GeV. Possible deviations from standard scenario, not inconsistent with an additional electron component.
 - B/C ratio and absolute fluxes up to 100 GeV/n.
 - Solar physics: measurement of modulated fluxes and solar-flare particle spectra
 - Physics of the magnetosphere: first measurement of trapped antiproton flux and detailed measurement of trapped proton flux.
- Other studies and forthcoming results: Primary and secondary-nuclei abundance (up to Oxygen), Solar modulation (long-term flux variation and charge-dependent effects), Solar events: several new events under study.

