

Cosmic Rays International Seminar - Gallipoli, Sep. 14-16, 2015

Cosmic radiation 2020: an INFN perspective

Marco Pallavicini

Università di Genova & INFN

Talk content

- INFN and the Cosmic radiation
 - The INFN Commission 2
 - Running projects
 - The future: a multi-messenger perspective
 - Protons and Nuclei
 - UHECR
 - High energy photons
 - Gravitational waves
 - Neutrinos
 - Low energy photons: CMBR and Dark Energy probes

INFN SCIENTIFIC ORGANIZATION

• INFN [3670 FTE, research staff + university associates]

• 5 "Commissioni Scientifiche Nazionali"			
CSN1 : Particle Physics with Accelerators	19.8 M€	796 FTE	
CSN2: Astroparticle and Fundamental Physics	12.3+9 M€	726 FTE	
CSN3: Nuclear Physics	9.2 M€	494 FTE	
• CSN4: Theory	2.7 M€	991 FTE	
CSN5: Technology	5.3 M€	663 FTE	

• CSN2: Astroparticle and Fundamental Physics

- 4 main areas of scientific activity (new structure, 2015)
 - 1) Neutrino Physics
 - 2) Radiation from the Universe
 - 3) The Dark Universe
 - 4) Gravitational Waves, Gravity and Quantum Physics

2015

Many diverse places

Marco Pallavicini - Università di Genova & INFN

- **Cosmic Radiation** is a keystone of CSN2 activity
 - Related to <u>all fields</u> of interest of the CSN2

Neutrino Physics Radiation from the Universe

Gravitational waves, Gravity and Quantum Physics

The Dark Universe

- **Cosmic Radiation** is a keystone of CSN2 activity
 - Related to <u>all fields</u> of interest of the CSN2

- **Cosmic Radiation** is a keystone of CSN2 activity
 - Related to <u>all fields</u> of interest of the CSN2

- **Cosmic Radiation** is a keystone of CSN2 activity
 - Related to <u>all fields</u> of interest of the CSN2

Toward the multi-messenger era: Work in Progress.....

STARS (Sun mostly)

✓ Photons (even ~100 MeV γ)

- Solar neutrinos
- SN neutrino burst
- ? SN neutrino diffuse
- Cosmic Rays (solar wind)

Compact objects, Unknown Objects, Diffuse

- ✓ Photons (from Radio to TeV γ)
- ? **PeV** photons
- ? Neutrinos ? PeV detected, No sources yet
- ? Cosmic Rays ? No clear sources yet
- **??** Gravitational Waves ? Only indirect detection
- ??? Indirect Dark Matter Detection ? Unclear
- **???? Neutrino background.** No known path to it.
 - (maybe indirect detection by EUCLID or similar)

Charged particles: projects

CRIS 2015 - Gallipoli (LE)

ERIS

Marco Pallavicini - Università di Genova & INFN

Flying detectors

AGILE, 23-4-2006 Mainly X and γ

PAMELA, 15-6-2006 e+, e-, nuclei, anti-p, anti-He

FERMI, I I-6-2008 Brand new γ sky, but also electrons AMS-02,11-6-2011 Charged particles up to 1 TeV

- 4 very successful missions with substantial Italian and particularly INFN contribution
 - Silicon detectors technology: know how from long standing accelerator experience
 - Data analysis, Detector simulations
 - Leading role on all projects

AMS-02

- 4 y of data taking (less than 50%)
 - INFN support for 10 y (later we will see)
 - An enormous amount of data

• Main effort in space until next generation

LHAASO

• Bridging direct space measurement with large ground based detectors

- Goal 1: CRs around and above the knee 10¹² 10¹⁸ eV
 - Understanding knee origin and disentangle galactic and possible extragalactic components
 - Composition around the knee is not understood completely, spectral index Z dependent
 - Simple diffusion models are challenged by data, and anisotropies are important

- Better or complementary to CTA for transients, GRB, all sky surveys, diffuse signal
- Searching for PeVatrons (hot topic after PeV neutrino discovery)

Auger (Prime)

Future space detectors

- Follow up of Agile-Pamela-Fermi-AMS02
 - Dampe
 - Important synergy with CAS. Chinese fundings.
 - 2 GeV 10 TeV e/ γ 30 GeV 100 TeV CR
 - Almost ready to fly
 - Gamma-400
 - Tracker + Innovative calorimetry (calocube)
 - 100 MeV 1 TeV e/γ 2% energy resolution, 10 TeV e⁻ Light nuclei up to the knee 1000 TeV
 - Excellent hadron / electron separation
 - High acceptance calorimeter
 - HERD
 - INFN R&D effort just starting now

Charged particles: future prospectives

- UHECR: AUGER-Prime
 - Are there protons or nuclei or both ?
 - End of spectrum or GZK ?
 - Do we understand primary interaction physics ?
- LHAASO
 - Knee composition and spectral indexes
 - Light nuclei from extragalactic origin ?
 - Complementary to CTA on Photons
- Space: what next ?
 - DAMPE ready to go.
 - Future: Herd or Gamma-400?
 - Current effort on Gamma-400. Herd R&D effort just starting now
 - Unlikely we fund both. No decision yet. It will depend by community / finance / launch opportunities

ok in principle negotiation in progress

γ sources and diffuse: science

- The γ sky is rich, variable, galactic and extra-galactic
 - Old faithful stable CRAB is gone...
 - Fermi has changed completely the picture in the GeV 100 GeV range
 - Pulsars, GRBs, SNRs, ...
 - Many TeV sources found, potential CR acceleration sites
 - Neutrinos suggest Pevatrons must exist
 - Sensitivity for DM searches new physics, quantum gravity

H.E. ys from ground detectors

• MAGIC

- <u>Running</u>, recently improved trigger, threshold down to 35 GeV
- INFN support till beginning of CTA

• CTA

- Pointing observatory 100 GeV 100 TeV
- Agreement with INAF for a coherent Italian effort (special fundings to INAF)
- INFN scope: trigger, electronics for LT
- Building on MAGIC experience: Canary Islands site approved besides Chile !

• LHAASO

- Large FoV and duty cycle
- More sensitivity above 10 TeV and knee CR physics too
- Complementary with CTA with better sensitivity at high energy and transient detection capability
- Scope: physics, simulations, analysis: building on ARGO experience

From Magic to CTA

- Present: Magic with 2 γ telescopes in Canaries
 - Reduced threshold down to 30 GeV
 - Most distant γ source ever observed
 - Gravitational lensing with H.E. γ

- The future is CTA, a Global project
 - Large Italian effort INAF + INFN
 - INAF already joined GmbH, INFN will do soon
 - Chile and Canaries sites selected
 - Good synergy with ESO and MAGIC sites

γ from space detectors

- INFN support to Fermi ok till 2018
 - New contract with ASI in progress.
- **DAMPE**: extension of energy range up to 10 TeV
 - Launch Dec. 2015
- Polarisation (astro-particle related)
 - X-rays: new polarimeters developed in Pisa.
 - LSPE: balloon mission for CMBR polarisation benefit from INFN technology on micro-bolometers
- X-rays physics. A tool for understanding sources
 - LOFT: Did not go through yet, but strong INFN interest

DAMPE tracker

Polarised CMBR

- LSPE: Large Scale Polarisation Explorer
 - Multifrequency B mode search with a balloon instrument
 - Neutrino technology (bolometers) + TES + KIDS
 - 5 channels (40 250 GHz) on a rotating detector
 - Angular resolution 1.5°-2.3° Sky coverage: 20-25%
 - Sensitivity: ~ IO µK equivalent noise

ERIS

CRIS 2015 - Gallipoli (LE)

Marco Pallavicini - Università di Genova & INFN

High energy neutrinos

- After Ice Cube discovery, increased interest for a high energy neutrino observatory in the Mediterranean
 - 24 M€ investment close to completion.
 - 8 towers and xx strings will be deployed in water in 2015/2016
 - New fundings necessary to complete
- Synergy with Toulouse site on ORCA
 - ORCA may find neutrino hierarchy
 - Waiting for good news from France

Neutrinos

- Low energy neutrinos (solar, SN, terrestrial) covered by Borexino / LVD at LNGS
- Deep sea detectors for:
 - Neutrino astronomy in the Mediterranean: Km3Net
 - Atmospheric neutrinos (hierarchy): ORCA
- Both high priority, only partially funded so far
 - Work in progress

CRIS 2015 - Gallipoli (LE)

Optical Module

23/27 Marco Pallavicini - Università di Genova & INFN

Gravitational waves

- Step 1: we need discovery!
 - Virgo-Ligo Adv. program almost ready to go
- Step 2: Birth of GW astrophysics
 - How many events with Adv detectors ?
 - Large uncertainty: 0.4 < events < 400 y
 - Future
 - Einstein Telescope for relatively high frequency observatory
 - LISA-PF ready for launch: key step toward low frequency observatory
- Multi-messenger observation with GW might be real in the next decade
 - Joint effort with optical, radio, γ, neutrino detectors
- R&D effort for new technologies (atom interferometry on ground or space)

Virgo Advanced

- One of the main INFN efforts
 - EGO + CSN2
 - Strong synergy and agreement with LIGO
 - ~ 8M€/y
 - We must find waves Ready for data in 2016

LISA-PF

- Goal: validate the concept of "no-touch" satellite
- Two Au-Pt masses in the same satellite
 - One free falling, the second one controlled by low-frequency electrostatic system
 - Launch in Dec. 2015

Conclusions

- A rich menu of activities cover all potential messengers now or in the near future
 - Photons from micro-wave to γ
 - Charged from GeV up to GZK
 - Neutrinos from 100 keV up to GZK
 - Gravitational waves still missing detection, but we are ready for that
- A strong program toward true multi-messenger observations for:
 - Astrophysics
 - Cosmology
 - Dark Matter Search
 - New physics and Unexpected results