

COSMIC RAY PHYSICS WITH ARGO—YBJ PAOLO MONTINI for the ARGO—YBJ COLLABORATION

INFN - Roma Tor Vergata

Cosmic Ray International Seminar 2015 14-16 September 2015 Castello Angioino, Gallipoli, ITALY

THE ARGO_YBJ EXPERIMENT

Istituto Nazionale di Fisica Nucleare (INFN) - Chinese Academy of Science (CAS)

(Astrophysical Radiation with Ground-based Observatory at YangBaJing)

- COSMIC RAY PHYSICS
- GAMMA RAY ASTRONOMY
- ► Longitude 90° 31′ 50″ East
- Latitude 30° 06' 38" North
- Altitude 4300 m a.s.l.(approx 600 g/cm²)

THE DETECTOR

Single layer of Resistive Plate Chambers (RPCs)

P. MONTINI

THE DETECTOR

STATUS AND PERFORMANCES

E₅₀[TeV]/Z

26.0

122

Full and stable data taking since Nov. 2007
 Full and stable data taking since Nov. 2007
 End of data taking in Feb. 2013
 Average duty cycle = 87% or the taking taking the taking taken to be a stable data taking since Nov. 2007
 Trigger rate ~ 3.5 kHz @ 20 Pad threshold
 ~ 5 x 10¹¹ events recorded
 * Fritt 100 TB/year or the taking taken to be a stable taking taken to be a stable taken to be a stable

Intrinsic Trigger Rate stability 0.5% (after corrections for T/p effects)

13

MAIN RESULTS IN COSMIC RAY PHYSICS

- COSMIC RAY ANISOTROPY
- COSMIC RAY ENERGY SPECTRUM
 - ALL-PARTICLE
 - PROTON + HELIUM
- ANTIPROTON-PROTON RATIO [Phys. Rev. D 85 (2012) 022002]
- P-AIR CROSS SECTION [Phys. Rev. D 80 (2009) 092004]
- GEOMAGNETIC EFFECTS [Phys. Rev. D 89 (2014) 052005]
- SHOWER TIME STRUCTURE

LARGE SCALE ANISOTROPY

2 years data: 2008 - 2009, during minimum of solar activity

E ≈1 TeV, 3.6×10^{10} events in the declination band $-10^{\circ} < \delta < +70^{\circ}$

First measurement with an EAS array in an energy region so far investigated only by underground muon detectors

R.A. profile of anisotropy can be described with 2 harmonics

$$I = 1 + A_1 \cos[2\pi(x - \phi_1)/360] + A_2 \cos[2\pi(x - \phi_2)/180]$$

Ap. J. 809:90 (2015)

LARGE SCALE ANISOTROPY

P. MONTINI

COSMIC RAY PHYSICS WITH ARGO—YBJ

MEDIUM SCALE ANISOTROPY

Data: November 8, 2007 - May 20, 2012

 $\approx 3.70 \times 10^{11}$ events dec. region $\delta \sim -20^{\circ} \div 80^{\circ}$

Map smoothed with the detected PSF for CRs Proton median energy $\approx 1 \text{ TeV}$

CRs excess \approx 0.1 % with significance up to 15 s.d.

Strip-multiplicity	number of	$\mathbf{E_p^{50}}$ [TeV]
interval	events	-
25 - 40	$1.1409 \times 10^{11} (38\%)$	0.66
40 - 100	$1.4317 \times 10^{11} (48\%)$	1.4
100 - 250	3.088×10^{10} (10%)	3.5
250 - 630	8.86×10^9 (3%)	7.3
more than 630	3.52×10^9 (1%)	20

-0.001 The size spectra look quite harder than the CR isotropic flux

-15

360

CRIS2015 14 SEP. 2015

COSMIC RAY PHYSICS WITH ARGO—YBJ

ANISOTROPY OF LIGHT ELEMENTS

"ratio-method"

use the complete set of events as reference for the estimation of the background of a particular subset of events. The idea is to measure the *local* fraction of *selected* to *all* events

Data: January 1, 2008 - December 31, 2012

Selection of light elements

Same criteria used for the light component energy spectrum analysis

In the energy region below 10 TeV the contamination does not exceed 0.3%, in the range(10–100) TeV is 4.2% and at energies higher than 100 TeV it has been evaluated as 9%.

Statistic is really poor. (p+He)-induced dipole amplitude less than 2% at 90% C.L

phase in right ascension: -6° ± 10° (minimum in coincidence with the loss cone)

R. luppa, PM, et al ICRC 2015 ID 290

COSMIC RAY ENERGY SPECTRUM

Different approaches & data sets

- Analysis of digital RPC data alone and statistical measurement of the energy spectrum by using a bayesian approach: p+He spectrum
- Analysis of analog RPC data alone and statistical measurement of the energy spectrum by using a bayesian approach: all particle and p+He spectra
- Analysis of analog RPC data alone and energy determination on an event by event basis: allparticle and p+He spectra
- Hybrid technique by using data from an imaging Cherenkov telescope in addition to analog RPC information: p+He spectrum

DIGITAL DATA – P+HE SPECTRUM

THE P+HE SPECTRUM

3 - 300 TeV energy range Rayosian Approach -	YEAR	Gamma
J-Job icv chergy range Dayesian Approach	2008	2.63 ± 0.01
Excellent stability over a long period	2009	2.63 ± 0.01
	2010	2.63 ± 0.01
Overlap with direct measurements in a wide energy region	2011	2.64 ± 0.01
Total systematic uncertainty ~ 5%	2012	2.65 ± 0.01

FLUX @ 50 TeV

YEAR	Flux x $10^{-9} \pm \text{tot. err}$
2008	4.53 ± 0.28
2009	4.54 ± 0.28
2010	4.54 ± 0.28
2011	4.50 ± 0.27
2012	4.36 ± 0.27

Phys. Rev. D 85 092005 (2012) Phys. Rev. D 91 112017 (2015)

Extension of the previous ARGO-YBJ light component spectrum measurement in the low energy region

ANALOG DATA – ALL PARTICLE & P+HE

Showers mainly produced by light elements

Rate [Hz]

10^{-2 |}

10⁻³⊧

10⁻⁴

10⁻⁵

10⁻⁶ ⊢

ALL PARTICLE & P+HE

⇒P+HE SPECTRUM

- ➡ Overlap with direct measurements in a wide energy region
- ➡ Gradual change of the spectral index at E ~ 700 TeV
- ➡Consistent with the Digital Readout data (different data set)
- ➡Systematics ~10%

➡ ALL-PARTICLE SPECTRUM

➡ Good agreement with other experiments

CRIS2015 14 SEP. 2015

➡Systematics ~10%

→ ~10-12% of contamination of heavy elements (mainly CNO) at the highest energies

P. MONTINI

MASS INDEPENDENT ENERGY RECONSTRUCTION

The truncated size as (mass dependent) energy estimator

Np₈ (number of particles within 8m from the core):

- well correlated with primary energy
- not biased by finite detector size effects
- weakly affected by shower fluctuations

Look for information on the shower age in order to have a mass independent energy estimator.

$$\rho_{NKG} = A \cdot \left(\frac{r}{r_0}\right)^{s'-2} \cdot \left(1 + \frac{r}{r_0}\right)^{s'-4.5}$$

Assume an exponential absorption after the shower maximum Get the correct signal at maximum (Np8max) by using Np8 and s' measurements for each event.

CRIS2015 14 SEP. 2015

MASS INDEPENDENT ENERGY RECONSTRUCTION

The measurement of Np8 and the (age correlated) LDF slope allows estimating the truncated size at the shower maximum.

This ensures a mass independent Energy determination.

ALL-PARTICLE & P+HE :

ALL-PARTICLE SPECTRUM

- Consistent picture with models and previous measurements
- Cross check with another ARGO-YBJ analysis
- Nice overlap with the two gain scales (different data set,...)
- Suggest spectral index of -2.6 below 1 PeV and smaller at larger energes

P+He SPECTRUM

- Same considerations as for the all-particle spectrum
- Gradual change of the slope starting around 700 TeV
- Agreement with other two ARGO-YBJ independent analyses
- Overlap with direct measurements at low energy
- Flux systematics as for the all particle spectrum ⊕
 < 15% mainly for the CNO contamination →
 Overall < 20 %

HYBRID ANALYSIS

WFCTA - Wide FoV Cherenkov Telescope Array

- ✤ 5 m² spherical mirror
- + 16 X 16 PMT Array
- Pixel size 1°
- ✤ FOV: 14°X16°
- + Elevation angle: 60°

Energy measurement obtained by using the shower geometry reconstructed by ARGO-YBJ and the Cherenkov signal

- ✦ ARGO-YBJ: N_{Max} Lateral distribution
- ★ WFCTA: Longitudinal distribution → Hillas parameters (composition sensitive)
- From 2010.12 ~ 2012.02: Coincidence events;
- Good weather selection: 7.28×10⁵ sec.

Proton

HYBRID ANALYSIS

THE P+HE SPECTRUM

100-2500 TeV energy range

- ▶ The knee of H&He spectrum at (700±230) TeV is clearly measured
- Broken power law fits data well with indices
- -2.56 ± 0.05 and -3.24 ± 0.36 below and above the knee
- Consistent with other two independent analyses

P+HE & ALL-PARTICLE: THE OVERALL PICTURE

CONCLUSIONS

- Cosmic Ray Anisotropy
 - •Large scale anisotropy: 2 harmonic profile agreement with other experiments
 - •Measurement of the medium scale anisotropy
 - First attempt of measuring the anisotropy of light elements
- P+He spectrum in the energy range 3-300 TeV
 Analysis of ~5 years of digital readout data
 Excellent detector stabilty over a long period
- P+He spectrum by using the analog readout data
 - •10-100 TeV energy range
 - •Good agreement with the digital analysis
 - •100-3000 TeV energy range
 - Evidence of a gradual change of the spectral index at energies around 700 TeV
 - •Good agreement with two other independent analysis within systematic errors
- All-particle spectrum in the energy range 40–800 TeV • Good agreement with other experiments

More Stuff

Energy reconstruction: bias and resolution

The response function is gaussian in LogE. The spectra are then given in LogE bins, much larger than the estimated bias and well above the LogE resolution, in the considered energy range.

2.211 0.1431

Log(E/Te\

Systematics from the hadronic interaction models

The dependence on the adopted hadronic interaction model is small. The differences among the QGSJET-II.03 and Sibyll-2.1 are within few percent in the explored energy range (no bias due to muon number). All further results shown here were obtained with QGSJET-II.03.

log10(Energy/TeV)

Energy reconstruction Using $\sum N_{pe}$ in Cherenkov image

- Look-up table: light component only
- Impact parameter (R_p): 5m/bin
- Log(total N_{pe}) bin: 0.1/bin
- R_p bin : linear interpolation
- α bin: linear interpolation
- Total N_{pe} bin: quadratic curve interpolation

E-reconstruction

- Systematic
 bias: <3%
- Constant resolution: 25%

Mean

RM8

 χ^2 / ndf

Mean Sioma

Constant

0.5

(E_{reoo}- E_{true})/E_{true}

300 TeV

Gaussian

-0.5

300

200

100

Amplitude and Phase of the first harmonic

dipole component as a tracer of the CR source distribution

- Consistency between different sets of data up to PeV.
- Extremely small amplitude: 10⁻⁴ 10⁻³
- Slow increase of A₁ with increasing energy to a maximum around 10 TeV.
- Slow fall of A₁ to a minimum at about 100 TeV.
- Evidence of increasing A above 100 TeV.
- Phase nearly constant (slowly decreasing) around 0 hrs.
- Dramatic change (decrease) of phase above 100 TeV.

G. Di Sciascio, Roma Tor Vergata, June 16, 2015