Results and Perspectives of the Tunka Experiments for Cosmic Ray Study.

Vasily Prosin (Skobeltsyn Institute of Nuclear Physics MSU, MOSCOW) **For the Tunka and TAIGA Collaborations** CRIS-2015, 14 – 16 of September 2015

51° 48' 35" N 103° 04' 02" E

675 m a.s.l.

Tunka Valley Republic Buryatia 150 km from Irkutsk 50 km from the shore of lake Baikal

EXPERIMENTS in Tunka Valley

Tunka-133

175 optical detectors EMI 9350 and HAMAMATSU Ø 20 cm

Tunka-HiSCORE 2013 – 2014

Prototype with 9 optical stations

Tunka-HiSCORE (2015-2016) – 28 stations

All the stations will be tilted for 25° to the South for observation of Crab Nebulae

About 20-60 γ -events from Crab are expected during 100 h of observation.

Connection of 2 antennas to 2 free channels of FADC

38 antennas are situated at the area of 1 km² now.

Tunka-133 data processing

Tunka-133 Single detector readout: Fitting of the pulse and measuring of the parameters: $Q=c \cdot S_{pulse}$, A_{max} , t_i , $\tau_{eff}=S/A/1.24$

Effective areas

Tunka-133 Experimental Data

5 winter seasons: 2009-2010, 2010-2011, 2011-2012, 2012-2013, 2013-2014 **262 clear moonless nights** ~ 1540 h of observation with a trigger frequency ~ 2 Hz ~ 10 000 000 triggers The cuts for the energy spectrum used: $\theta \leq 45^{\circ}$ R_{center} < 450 m: **M**: ~ 270 000 events with $E_0 > 6.10^{15} \text{ eV} - 100\%$ efficiency ~ 99 000 events $E_0 > 10^{16} \text{ eV}$ ~ 4000 events $E_0 > 5.10^{16} \text{ eV}$ ~ 983 events $E_0 > 10^{17} \text{ eV}$ R_{center} < 800 m: L: ~ 12400 events $E_0 > 5.10^{16} \text{ eV}$ ~ 3000 events $E_0 > 10^{17} \text{ eV}$

EAS parameters accuracy: experimental estimations by chessboard method

Combined energy spectrum construction

Combined differential primary energy spectrum

Five years summarized spectrum

Energy spectrum: power law fitting

Structure of the "second" knee

Tunka-HiSCORE data processing

Tunka-HiSCORE record (DRS-4): parameters: $Q=c \cdot S_{pulse}$, A_{max} , t_i , τ_{eff} =S/A/1.24

Time step = 0.5 ns

Cerenkov light pulse record

Delay measurement accuracy = 0.2 ns

Clock signal 100 MHz

Tunka-HiSCORE event example Zenith angle = 7.2° Energy = 10^{16} eV

Shower front

Tunka-HiSCORE Experimental Data

84 h during 13 clean moonless nights in February and March of 2014 $\sim 145\ 000$ events with E₀ > 3·10¹⁴ eV – 100% efficiency

~ 21 000 events $E_0 > 10^{15} \text{ eV}$

~ 200 events $E_0 > 10^{16} \text{ eV}$

Spectrum Structure in the Knee

Energy Spectrum: Comparison of Experiments

Energy spectrum: Sharp features reflecting the termination energy for different elemental groups at one of the sources

X_{max} method of mass analysis

CORSIKA

(Correlations are model, energy, zenith angle and composition independent)

EAS arrival direction and X_{max} accuracy:

 $< X_{max} > vs. E_0$

EXPERIMENT: MEAN < InA> vs. E₀

ANALYSIS of X_{max} DISTRIBUTIONS PRELIMINARY

Fit with weighted sum of 4 group MC simulated distributions: Fe, CNO, He, p

Spectra of light (p+He) and heavy (all other) CR components (2015) PRELIMINARY

Further perspectives

To expand the energy range of mass analysis:

 10¹⁵ – 10¹⁶ – Tunka-HiSCORE-28 – adapting of Tunka-133 methods to the new array. Results will appear next (2016) year.

2. $10^{17} - 10^{18}$ – Total time duty measurements by Tunka-Rex and Tunka-Grande. Rate of data acquisition will be 20 times higher than for Cherenkov light experiment (4000 events/year). The first results are expected at the next (2016) year.

EAS energy measurement by the radio emission

Tunka-REX

Cerenkov light trigger (from Tunka-133). Independent EAS parameters reconstruction:

Figure 5. Example event. Left: footprint with arrival time in color code. Light gray crosses are stations below the signal-to-noise threshold. The small dark-gray cross is a station without measurement for this event. The star and the line indicate the reconstructed shower core and direction. Right: Lateral distribution after asymmetry correction and fitted LDF. The light gray point is a station below threshold.

Tunka-REX

Correlation of the shower energy reconstructed with Tunka-Rex radio and Tunka-133 air Cherenkov measurements:

Tunka-Grande

Scintillation detectors for EAS electron and muon measurements.

(Former EAS-TOP and KASCADE-Grande detectors)

Tunka-Grande: Transportation of SD to Tunka Valley

Tunka-Grande: The first muon detector

Tunka-Grande: Surface and underground detectors of EAS electrons and muons

AIRES simulation 10¹⁷ eV

Mass resolution better than for X_{max} method:

AIRES simulation

$$E_0 = 10^{17} \text{ eV}, \ \theta = 0^{\circ}$$

Improvement of mass resolution: Change of N_{μ} to $N_{\mu}^{1.5}$

AIRES simulation

$$E_0 = 10^{17} \text{ eV}, \ \theta = 30^{\circ}$$

Improvement of mass resolution: Change of N_{μ} to $N_{\mu}^{1.5}$

CONCLUSIONS

1. The spectrum from 6.10¹⁵ to 10¹⁸ eV cannot be fitted with single power law index:

$\gamma = 3.23 \pm 0.01$	$5 \cdot 10^{15} < E_0 < 2 \cdot 10^{16}$ eV.
γ = 2.99 ±0.01	$2 \cdot 10^{16} < E_0^2 < 7 \cdot 10^{16} eV.$
$\gamma = 3.07 \pm 0.03$	$7 \cdot 10^{16} < E_0^{-10} < 3 \cdot 10^{17} \text{ eV}.$
$\gamma = 3.34 \pm 0.11$	$E_0 > 3.10^{17} \text{ eV}.$

- Mass composition changes to heavy from 10¹⁶ to 3·10¹⁶ and changes back to light in the range 10¹⁷ – 10¹⁸ eV, but the variations are less than it seemed about 5 years ago.
- 3. The X_{max} obtained at Tunka-133 do not contradict to that of HiRes-MIA and Auger data. But the new data from HEAT-AUGER shows more light composition (pure protons) before 10¹⁸ eV
- 4. Possible double structures in the first and the second knees as well as the possible variations of composition has to be investigated with new statistics from Tunka-HiSCORE-28 and Tunka-Grande arrays.
- 5. We hope to get the separate spectra of light and heavy nuclei at the energy range 10¹⁷ 10¹⁸ eV. The results are expected next year (2016).

Thank you!

