

Study of charged cosmic rays with the Fermi Large Area Telescope

Carmelo Sgrò

INFN-Pisa carmelo.sgro@pi.infn.it

on behalf of the Fermi LAT collaboration

CRIS 2015, September 14

THE FERMI OBSERVATORY

HTTP://FERMI.GSFC.NASA.GOV/

Large Area Telescope (LAT)

- ► Pair conversion telescope
- ► Energy range: 20 MeV >300 GeV
- ▶ Field of view: $\sim 2.4 \text{ sr (at 1 GeV)}$
- ► Effective area: $\sim 6500 \text{ cm}^2$ on axis (at > 1 GeV)

- ► Launched by NASA on 2008 June 11, from Cape Canaveral, Florida
- ► Launch vehicle: Delta II Heavy
- ► Orbit: 25.6° inclination, 565 km altitude

γ RAYS DETECTION PRINCIPLE

- Standard technique for high-energy γ -ray astrophysics
 - ▶ Dominant interaction mechanism for $E > \sim 20 MeV$
 - Used by past experiment like COS-B and EGRET
- $ightharpoonup \gamma$ -ray converts in the middle of Tracker/Converter $\rightarrow \gamma$ -ray direction
- \blacktriangleright Calorimeter absorbs part of the e.m. shower $\rightarrow \gamma$ -ray energy
- ► No signal in the Anti-coincidence shield → charged particle discrimination

Not only γ rays

- Detector is designed for E. M. showers
 - Naturally including electrons $(e^+ + e^-)$
- ► Triggering on (almost) every particle that crosses the LAT
- ► On-board filtering to remove many charged particles
 - Keeps all events with more than 20 GeV in the CAL
 - Prescaled (×250) unbiased sample of all trigger types
- ► Event reconstruction assumes a E.M. shower
 - Works fine for electrons
- ► Electron identification
 - Dedicated event selection
- No charge separation

ELECTRON EVENT SELECTION

Just an example to show the idea

Candidate electron 475 GeV deposited energy, 834 GeV reconstructed

- Clean main track with extra clusters close to the track (note backsplash from the calorimeter)
- Relatively few ACD tile hits, mainly in conjunction with the track
- ► Well defined (not fully contained) symmetric shower in the calorimeter

Candidate hadron 823 GeV deposited energy, 1 TeV reconstructed

- ► Small number of extra clusters around main track, many clusters away from the track
- ▶ Different backsplash topology, large energy deposit per ACD tile
- Large and asymmetric shower profile in the calorimeter
- ► Final event selection by combining these information in Decision Trees
 - A pretty standard techinque now

"LOW ENERGY" ELECTRONS BELOW ~20 GEV

- ▶ Need to take into account the effect of the Geomagnetic field
 - Rigidity cutoff depends on the detector geomagnetic position
 - ightharpoonup pprox 7 GeV is the minimum energy accessible in the Fermi orbit
- ▶ Data are divided in independent McIlwain L bins
 - ▶ The cutoff Energy is extracted by fitting the electron flux
 - For each energy bin we use only the McIlwain L region for which the measured cutoff is below the low edge

Cosmic-ray $e^+ + e^-$ spectrum

Abdo, A. A. et al. Phys. Rev. Lett. 102, 181101 (2009)

Ackermann, M. et al. Phys. Rev. D 82, 092004 (2010)

- Our first result: spectrum from 7 GeV to 1 TeV
 - High-energy endpoint mostly limited by crystal saturation in the CAL
 - Systematic uncertainty dominated by the knowledge of effective geometry factor
- ► Spectrum is harder than in pre-Fermi GALPROP model
 - ► Can be fitted by a power-law with spectral index in the interval 3.03–3.13

SEARCH FOR ANISOTROPIES IN $e^- + e^+$

- ► Fermi offers large exposure, and complete sky coverage
- Comparison of the real sky map with no-anisotropy one (null hypothesis case)
 - Accounts for non uniform exposure
 - Constructed artificially from the actual data set
 - ► Avoiding MC usage

No-anisotropy map (E > 60 GeV)

Significance map (E > 60 GeV)

SEARCH FOR ANISOTROPIES IN $e^- + e^+$

- ▶ No anisotropy observed in the first year of operation: only upper limits
- ▶ Dipole anisotropy is a valuable tool to constrain models
 - ▶ 95% confidence level compared with several models
 - ▶ Dominance of a single, very bright nearby source is disfavored
 - ▶ Dark Matter models predict a smaller effect

Ackermann, M. et al., Phys. Rev. D 82, 092003 (2010)

In-flight energy scale calibration

Exploiting the $e^- + e^+$ geomagnetic rigidity cutoff

- ► The value for the cutoff rigidity can be predicted using a particle tracing code
 - ► Using code written by Smart & Shea (Final Report, Grant NAG5-8009, 2000)
 - Geomagnetic field described with IGRF model
- Comparison of predicted and measured values provides an opportunity to perform an in-fight verification
- By using different McIlwain L intervals we obtain several calibration points from 6 to 13 GeV
 - ► The energy scale is known within 5% (in this energy range)

Ackermann, M. et al., Astropart. Phys., 35, 346 (2012)

How we can distinguish e^+ and e^-

- ► The LAT doesn't carry a magnet on-board
 - We can not directly discriminate particle charge
- ► The only magnet we can use is provided by the Earth

- ► The solid Earth surrounded by its magnetic field blocks some of the particle trajectories
 - Continuous lines in the figures above
- ► There are regions in which only one of the two particle types is permitted
 - ▶ Pure e^+ region in the West direction & Pure e^- region in the East direction
- ▶ Particle trajectories are numerically traced in geomagnetic field
 - Region boundaries vary with energy and LAT position in the orbit

Cosmic-ray e^+ -only and e^- -only spectra

- ► Three regions used in this analysis: $e^+ + e^-$, e^- , e^+
 - ► Smaller e⁻-only and e⁺-only as energy increases
 - This limits the highest energy
- ► Useful data only when the LAT is looking down at the Earth (non–survey mode)
 - \sim 39 days of livetime, up to April 2011
- ▶ Positron fraction can be calculated from e^+ and e^- spectra
- ▶ It increases with energy from 20 to 200 GeV
 - First independend confirmation of PAMELA result

Ackermann, M. et al., Phys. Rev. Lett. 108, 011103 (2012)

THE NEW EVENT ANALYSIS PACKAGE: PASS 8

- ▶ Pass 8 is a complete rework of the entire event level analysis
 - ► Simulation, reconstruction, background rejection, analysis methods
- ► Effectively a new instrument, with superior performance
- ▶ Data processing pipeline switched to Pass 8 on 24 June 2015
 - FSSC now serving Pass 8 data ▶ Tree-based tracking pattern recognition
- ► Calorimeter clustering to handle "ghost" events

 Improved shower profile fit for energy reconstruction

A NEW ANALYSIS FOR COSMIC RAY ELECTRONS

► Similar strategy as before:

- A few simple cut to require a minimum event quality and remove not well simulated event topology
- Decision Trees to remove the bulk of hadronic contamination
 - ▶ Based on roughly the same topological information as before
- ► Moving to the TMVA package for classifiers
 - ▶ Boosted Decision Trees (BDT) provide the best performance
 - Several combination of training setting under study

► Basic quality cuts:

- At least a reconstructed track and 5 GeV of energy deposition in the CAL
- A loose selection on the PSF quality (using the same handle as in γ-ray analysis)
- At least 8 radiation lengths in the CAI
- ► Field of view is limited to 60°

A NEW ANALYSIS FOR COSMIC RAY ELECTRONS

► Similar strategy as before:

- A few simple cut to require a minimum event quality and remove not well simulated event topology
- Decision Trees to remove the bulk of hadronic contamination.
 - ▶ Based on roughly the same topological information as before
- ► Moving to the TMVA package for classifiers
 - ▶ Boosted Decision Trees (BDT) provide the best performance
 - Several combination of training setting under study

► Alpha and ions removal:

- Relatively easy to separate using, e.g., the pulse height information in the ACD and the tracker
- Their hadronic interactions are comparatively hard to simulate
- A set of simple cuts bring down their contamination to a negligible level

A NEW ANALYSIS FOR COSMIC RAY ELECTRONS

► Similar strategy as before:

- A few simple cut to require a minimum event quality and remove not well simulated event topology
- ▶ Decision Trees to remove the bulk of hadronic contamination
 - ▶ Based on roughly the same topological information as before
- ► Moving to the TMVA package for classifiers
 - ▶ Boosted Decision Trees (BDT) provide the best performance
 - Several combination of training setting under study

Template fitting of the BDT output

- Fitting only normalization
- Testing the data-MC agreement
- Estimating signal directly from the fit
- Estimating the residual background correction

Preliminary $e^+ + e^-$ spectrum

- ► Shaded region includes the maximum variation changing the CT efficiency from 90% to 20%
- Effect of absolute energy scale uncertainty not included

- ▶ We have evidence that at least a significant part of the difference with our 2010 result is due to "ghost" signal
 - ▶ This was not taken into account in the acceptance in our first analysis
 - \blacktriangleright Subsequent studies (e.g. the control region in the positron analysis) suggest an overestimation of acceptance by 10–15% at $\sim\!10$ GeV
 - ▶ Pass 8 is designed to be less sensitive to "ghost"

SENSITIVITY TO ANISOTROPY

- ▶ The final goal is the search for local sources of $e^+ + e^-$
- ► Anisotropy analysis is still statistics limited
 - Upper limits improves with time
- With 7 years of Pass 8 data we may be able to exclude the case of a single dominant source
- Here a simple exercise based on a toy-MC and reasonable response functions:

Proton analysis

- ► The goal is to reconstruct a spectrum in an energy range that can join space-baced and balloon measurement
- Similar strategy as for electron analysis
 - A few cut to remove obvious background
 - A BDT for the final selection
- ► Here an example of how alpha and heavier ions are identified and removed
- With a few additional difficulties
 - No energy reconstruction for single events
 - ► Need to unfold the energy distribution
 - ▶ Here the LAT's response using proton simulations
 - Uncertainties on hadronic simulation to be studied

Conclusions

- ► Cosmic-ray studies with the Fermi-LAT have been quite successful
 - ▶ Inclusive $e^+ + e^-$ spectrum from 7 GeV to 1 TeV
 - Upper limits on anisotropies in the arrival directions above 60 GeV
 - ▶ Particle tracing in Earth's magnetic field
 - ► Charge discrimination and test of instrument calibration
- ▶ New analysis in progress with the new Pass 8 event-level analysis
 - ▶ New reconstruction, improved MC simulation, new analysis tools etc...
 - ► About ×6 more data available
 - Focusing on the high-energy extension (> 1.2 TeV)
 - Working on particle tracing for low energies (< 30 GeV)

SPARE SLIDES

PASS 8 CRE INSTRUMENT RESPONSE

- ► Testing the stability of the spectrum in this very wide range
 - Spectrum variation likely relate to data-MC disagreement
- ► Form 90% to 20%, (almost) energy-independent
 - ► Maybe a too wide...
- Average acceptance (after cuts) for this scan shown on the left
- "Best" cut can be evaluated using the MC-based ROC, as the point in which the slope goes above a defined threshold
- ► Bottom plot shows the corresponding residual contamination
 - ► Can be very large at high energy

ENERGY RESOLUTION FOR ELECTRONS

- ► After a complete selection, including a cut on a classifier
- ► Integrating all the field of view

ENERGY RECONSTRUCTION: SHOWER PROFILE FIT

Ph. Bruel 2012 J. Phys.: Conf. Ser. 404 012033

- ► The principle: fit the energy deposit in each layer
 - $ightharpoonup q(\alpha, \beta, E)$ is to constrain the α and β to be close to their average

$$\chi^2(\alpha, \beta, E) = \sum_{i=0}^{8} \frac{(E_{meas,i} - E_{pred,i}(\alpha, \beta, E))^2}{\delta E^2} + g(\alpha, \beta, E)$$

- ▶ Need a precise modeling of the shower development through the CAL layers
 - $ightharpoonup f_i(t)$ is the fraction of energy deposited in layer i
 - \blacktriangleright For off-axis photons the energy at a given t is shared between layers

STATUS OF THE LAT

- LAT is healthy and continuously collecting data
 - More than 99% up-time collecting science data (out of the SAA)
- ► Primary mode is sky survey
 - Scan entire sky every 3 hours
 - ▶ 1 orbit rock north, 1 orbit rock south
 - ► LAT boresight stays away from the Earth
- ▶ More time in pointed mode in ~ 2014
 - Autonomous Repoint Request and Target of Opportunity
 - ► To favor specific science targets (e.g. Galactic Center)