Status and perspectives of the KM3NeT

Annarita Margiotta Dip. di Fisica e Astronomia UniBO and Sezione INFN – Bologna on behalf of the KM3NeT Collaboration

Sezione di Bologna

KM3NeT

What is KM3NeT?

- Distributed research infrastructure
- Network of neutrino telescopes:
 - exploration of the whole neutrino energy range
- ARCA: Astrophysical Research with Cosmics in the Abyss
 - Study astrophysical neutrino fluxes at E > 100 GeV (@KM3NeT-It)
- ORCA: Oscillations Research with Cosmics in the Abyss
 - Resolve the neutrino mass hierarchy 1 GeV < E < 100 GeV (@KM3NeT-Fr)

KM3NeT-HQ

The KM3NeT Research Infrastructure 3 Installation Sites in the Mediterranean

KM3NeT-Data Centre

KM3NeT-FR

KM3NeT-Gr KM3NeT-It

km3net.org

Sezione di Bologna

stituto Nazionale di Fisica Nucleare

Scientific goals of KM3NeT

ARCA

- Point sources identification: galactic TeV gamma sources
- Diffuse high-energy neutrino fluxes \rightarrow IceCube flux

ORCA

- Neutrino-mass hierarchy studies
- Atmospheric neutrino oscillations

This talk is dedicated mainly to ARCA

16/09/15

M

Why a HE neutrino telescope in the Mediterranean Sea

• VHE γ rays absorbed by dust and radiation

• Ambiguous information about leptonic vs hadronic mechanisms

Charged CRs direction scrambled by magnetic fields

16/09/15

A. Margiotta - CRIS 2015

NTMA

Northern vs Southern neutrino telescope

• Favourable location to observe directly the Southern Sky

• Excellent angular resolution thanks to the long scattering length

How does a neutrino telescope work?

muon neutrino, CC only (track reconstruction) all neutrino flavours, CC & NC (shower reconstruction)

The KM3NeT design

- Detection unit (DU) = vertical string with multi-PMT digital optical modules (DOMs)
- Multi-site infrastructure
 - High energy:ARCA @ KM3NeT-It site
 - Low energy: ORCA @ KM3NeT-Fr site

Same technology

 Power and data distributed by a single backbone cable with breakouts at DOMs and optical data transmission

Building block = 115 DUs

16/09/15

THE REAL

The Digital Optical Module

Innovative design 31 x 3" PMTs = 3 x 10" PMTs (photocathode area) 19 PMTs down looking/12 PMTs up looking Low power consumption < 10 W/DOM FPGA readout for each PMT

- sub-ns time stamping
- time over threshold (ToT)
- Calibration
 - LED & acoustic piezo

Pressure resistant glass sphere

lstituto Nazionale di Fisica Nucleare

Sezione di Bologna

16/09/15

A. 1

The Detection Unit

Vertical string with 18 DOMs

(~700 m high for ARCA, still under study for ORCA)

Mechanical structure:

- two Dyneema® ropes
- anchor and buoys to keep taut the string
- Backbone (VEOC): oil filled tube (~6mm diameter) with 2 copper conductors and 18 fibres; break out of cable at each DOM
- Base module with opto-electronics (DWDM) for data transmissionInterlink

cables for connection to the sea floor network

The Launcher of Optical Modules (LOM)

April 2013 - June 2014 : mechanical tests Successful demonstration of deployment concept and of the functionality of the VEOC cable

diameter ~ 2 meters

rapid deployment autonomous unfurling recoverable

Prototypes – The PPM - DOM

KM3NeT

Aprile 2013-November 2014 **PPM-DOM** at the ANTARES site (2500 m under s.1.)

Functionality and performance successfully demonstrated

Eur. Phys. J. C (2014) 74:3056

Prototypes – The PPM - DU

DU Prototype with 3 DOMs: proof of DU functionality

- 2 DOMs with ETEL D783FLA PMTs + 1 DOM with Hamamatsu R12199-02 PMTs
- Test of read-out, DAQ, connection
- Time calibration methodology developed:
 - 40K for intra-DOM calibration
 - LED nano beacons and atmospheric muons for inter-DOMs calibration

May 2014 / July 2015

Some results with PPM-DU

KM3Ne

PDF of the mean photon rate red line = expected Gaussian background due to 40K decay. The tail is due to bioluminescence

Mean time offsets for DOM 2 wrt DOM1 evaluated with nanobeacon of DOM1. Time accuracy ~ 1 ns.

16/09/15

A. Margiotta - CRIS 2015

13

VWT

PPM-DU Results

Reconstruction of zenith angle of atmospheric muons Input: positions of the three DOMs and time of the local coincidences FWHM = 7.6°

Istituto Nazionale di Fisica Nucleare Sezione di Bologna

16/09/15

intra-DOM calibration search for coincidences due to 40K decay

KM3NeT timeline

NOW

- KM3NeT Phase-1
- completely funded : 31 ME

- 31 detection units to be deployed in 2015-2016
- KM3NeT-It (24 DUs) + KM3NeT-Fr (7 DUs)
- KM3NeT 2.0 : two site infrastructure

NEXT FUTURE

- ARCA for HE neutrinos @KM3NeT- It + ORCA for NMH @ KM3NeT-Fr
- ♦ Construction : 2017 2020
- Additional funding : 90 ME

Proposed to ESFRI Letter of Intent in preparation

Final detector 3 x 2 Building Blocks in 3 sites \approx 3 km³ >2020; additional funding 130-170 ME

KM3NeT Status

• First full DU already integrated and ready for deployment at the KM3NeT-Fr site

- Integration of the second DU in progress. To be deployed at the KM3NeT-It site
- DOM mass production started 3 integration sites
- DU integration started 2 integration sites

DOMs ready to be integrated

KM3NeT – Phase 1 @ Italian site

Cable termination frame feeds & connects 4 JBs

Shore Station at Portopalo di Capo Passero

Sea floor network ready for deployment and connection of DUs

24 string-like DUs + 8 "NEMO" towers

The KM3NeT/ARCA

KM3NeT /ARCA =2 x

16/09/15

lstituto Nazionale di Fisica Nucleare

Sezione di Bologna

Performances of KM3NeT/ARCA

16/09/15

KM3NeT

"track" and "cascade" events

620 TeV CC ν_{μ} event

1083 TeV CC ν_{e} event

Reconstruction strategies for both topologies developed

KM3Ne

16/09/15

track reconstruction

KM3NeT

Energy resolution 0.26 in $\log E_{\mu}$ (1 TeV < E_{ν} < 100 PeV)

Angular resolution about 0.2° (E $_{\nu}$ >10 TeV)

IStituto Nazionale di Fisica Nucleare Sezione di Bologna

16/09/15

A. Margiotta - CRIS 2015

cascade reconstruction

Energy resolution better than 10%

Angular resolution better than 2°

Sensitivity to a diffuse flux

 Measurement of the IceCube flux with a better angular resolution and from a different point of view.

• Benchmark: $\Phi(E) = 1.2 \cdot 10^{-8} (E/1 \text{ GeV})^{-2} \exp(-E/3 \text{ PeV}) \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$

◆ Due to the uncertainty on the spectral function several fluxes
tested → results are quite similar

Signal and background simulation

Monte Carlo generation:

- All flavours simulated: cascade and track events.
- Background:

lstituto Nazionale di Fisica Nucleare

Sezione di Bologna

- large sample of atmospheric muons : about 3 years LT
- atmospheric neutrinos:
 - Honda model for conventional flux
 - + Enberg for the prompt component

Sensitivity to neutrino diffuse flux

KM3Ne

Discovery at 5σ in less than one year

Systematic uncertainty:

- Scattering length (±10%)
- Absorption length $(\pm 10\%)$
- PMT effective area $(\pm 10\%)$
- Not working PMTs (-10% randomly

chosen)

Random azimuthal rotation of the

DOM (3°/6°/9°)

- Atmospheric neutrino flux
 - prompt component (Enberg model high/low prescription)
 - conventional component (Honda flux ±25% in the normalization factor)

25

16/09/15

Istituto Nazionale di Fisica Nucleare

Sezione di Bologna

A. Margiotta - CRIS 2015

Diffuse flux from the galactic plane

4.5

3.5

Salactic latitude (deg Considering an enhanced diffuse flux from the central region of the Galactic Plane 20 < 30° |b| < 4° 10⁻⁸ Galactic longitude (degrees ANTARES, spectral index: $-2.4 (\nu_{\mu} \times 3)$ Preliminary results for up-going track events Fermi-LAT data IceCube (28 events) KM3NeT preliminary 10⁻⁹ cm⁻²s⁻¹ IceCube (37 events) Significance (o) oper Limits 90% CL (1500 days) 1 b <4° 1 1 <30° ſerg 10⁻¹⁰ d∲/dE, Discovery at 5σ in °₃ 10⁻¹¹ ⊔ about 5 years (cut 5x10⁷ GeV) (cut 5x10⁶ GeV) KRA' (cut 5x10⁷ GeV) KRA (cut 5x10⁶ GeV) Extrapolation from Fermi-LAT data 10⁻¹² flux per flavour 5 10⁻⁶ (E/1GeV)^{2.3}exp(-sqrt(E/1 PeV)) GeV⁻¹ s⁻¹ qm⁻² sr⁻¹ 10^{-2} 10⁰ 10^{3} 10^{2} 10^{4} 10^{-1} 10 2 з 5 E, [TeV] Observation time [year]

Galactic sources with ARCA -1

- HE gamma emission observed by HESS in SNRs
- Neutrino spectra predicted using gamma spectra
 - S.R. Kelner, et al., PRD 74 (2006) 034018 (SNR RXJ1713)
 - § F.L. Villante and F. Vissani, PRD 78 (2008) 103007 (PWN Vela)
- 100% hadronic emission and transparent source
- spectra cutoffs of the order of few tens of TeV

Extension: 0.6°

Galactic sources with ARCA - 2

- Analysis with upgoing muon neutrino golden channel
- Preselection cuts applied to reject most of the atmospheric neutrino background
 - cuts on reconstructed zenith angle and source radius
- Final cut based on the Multivariate analysis (Boost Decision Tree)
- Evaluation of the flux at different significance with unbinned method -> Max. likelihood method

- Angular resolution $< 0.2^{\circ}$ for E $_{\nu} > 10$ TeV
- Energy resolution 27% in log(E $_{\mu}$) for 10 TeV < E $_{\mu}$ < 100 PeV

A. Margiotta - CRIS 2015

E⁻² spectra

Very large field of view – discovery potential for point-like sources with a spectrum proportional to E^{-2}

Not only HE neutrinos : ORCA

- Measuring matter-induced modifications of neutrino flavor oscillation probabilities by detecting atmospheric muon and electron neutrinos traversing the Earth interior.
- High precision measurement: few percent differences in the event count. Good discrimination event topology.
- Systematic uncertainties :
 - efficiencies of the photosensors + absorption length of light in water
 - neutrino flux & hadronization models
 - oscillation parameters

lstituto Nazionale di Fisica Nucleare

Sezione di Bologna

- Likelihood ratio calculated by testing both hypotheses (NH/IH) on the events
- Same technology as in ARCA, but denser configuration of detection units, @KM3NeT-Fr site
 - Inter-string distance 20 m; vertical DOM spacing 6-18 m (to be optimised)
- E-O cable and Junction Box already deployed and connected \rightarrow 6 strings by 2016 (Phase-1)

In 3 years full ORCA (1 Building Block – 115 DU) ready, if more funds available (+ 40 ME)

16/09/15

A. Margiotta - CRIS 2015

1

Summary

- The KM3NeT collaboration is building a network of neutrino telescopes in the Mediterranean Sea
- Investigation of the neutrino sky with unprecedented resolution
- Complete coverage of the neutrino energy range:
 - ARCA for high energy cosmic neutrinos \rightarrow unprecedented resolution
 - ORCA neutrino mass hierarchy and oscillations with $1 \text{GeV} < E_{\nu} < 100 \text{ GeV}$
- KM3NeT/ARCA ($\approx 1 \text{ km3}$) @ the Italian site
- KM3NeT/ORCA @ the French site
- Phase-1 started and completely funded

Following phase : KM3NeT 2.0

16/09/15

A. Margiotta - CRIS 2015

