Recent Results from the Telescope Array Project

William Hanlon

High Energy

Astrophysics Institute \&
University of Utah

Telescope Array Collaboration

5 nations, 33 institutions, 124 members

TA Observatory

Largest cosmic ray observatory in the Northern hemisphere.
$\sim 750 \mathrm{~km}^{2} \rightarrow \sim$ land area of New York City.

Millard County, Utah
$39^{\circ} 17^{\prime} 48.90457^{\prime \prime}$
$112^{\circ} 54^{\prime} 31.43708^{\prime \prime}$
1370 m
$\sim 800 \mathrm{~g} / \mathrm{cm}^{2}$ vertical depth

Scintillator surface counters
Air fluorescence telescopes
25 kW radar transmitter
Lightning detection array
40 MeV linear accelerator

TA Detectors

507 scintillation counters surface detector
1.2 km grid spacing (3 m² area)

Total detection area: 700 km²
~100\% duty cycle

3 fluorescence detector stations
48 FD telescopes

In operation since March 2008

TA Surface Detectors

Solar cell and battery
Wireless LAN (2.4 GHz) communications
12 bit FADC, 50 Msps: 20 nS time resolution, dynamic range of 4096 FADC counts

Event readout/monitoring/calibration via 3 communication towers

Scintillator:
2 layers (upper and lower), each $3 \mathrm{~m}^{2} \times 1.25 \mathrm{~cm}$
1 PMT for each layer

TA Fluorescence Detectors

BRM \& LR FD stations:
12 telescopes each
256 pixels/telescope @ 1 $/$ pixel 108° azimuth, $3^{\circ}-33^{\circ}$ elevation view 10 MHz FADC readout

MD FD station:
14 telescopes
256 pixels/telescope @ $1^{\circ} /$ pixel
112° azimuth, $3^{\circ}-31^{\circ}$ elevation view
S/H electronics (HiRes1)
Operation start date: Oct. 2007

TA Low Energy Extension (TALE)

TA Hybrid High Energy Event

Hybrid combines SD information (core, timing at the ground) with FD information (profile, timing in the atmosphere) to make improved shower measurement.

Energy: $1.3 \times 10^{20} \mathrm{eV}$

 R_{p} : 21 km zenith: 55.7 deg
Spectrum

TALE as IACT

T. AbuZayyad, ICRC2015

Typical fluorescence event:
5 TALE telescopes (3 MD not shown)
Event duration: ~ few microseconds
Long angular extent
Threshold $\sim 3 \times 10^{16} \mathrm{eV}$

TALE event data
Event Starting: 7: : :140076063391744.595078
$\begin{array}{ll}\text { Energy: } \\ \text { Shower max size: } & \begin{array}{l}9.345 \mathrm{PeV} \\ 5.639 e+06 ~ p a r t i c l\end{array}\end{array}$

Rp Magnitude: 1.190 kn
ψ angle: 1207 degrees
Shower azimuthal angle:- 22.7 degrees Shower zenith angle: 51.9 degrees

Typical Cherenkov event:
1 TALE telescope
Event duration: 100-600 nanoseconds
Short angular extent
Threshold $\sim 3 \times 10^{15} \mathrm{eV}$
Viewing angle $\sim 10^{\circ}$, detection volume limited

TALE Cherenkov

TALE Spectrum via Cherenkov - 1st measurement

Telescope Array Measured Spectra

PCGF method - same as used for HiRes1 mono

Simultaneous geom/profile fit. Zenith angle is well constrained.

Extends ~ 2 decades below FD mono, ~ 1 decade below TALE bridge.

TA 7 year SD Spectrum

TA Combined Spectrum

TA Combined Spectrum Energy Resolution \& Exposure

D. Ivanov, ICRC2015

4 components of TA spectrum: TALE Cherenkov, TALE bridge, TA BR/LR monocular, TA SD.

TA Combined Spectrum Comparison

Fitting TA UHECR Spectrum

7 year TA SD spectrum

Uniform proton source distribution, $E>10^{18.2} \mathrm{eV}$
Injection spectrum $E^{-p}, E_{\max }=10^{21} \mathrm{eV}$
Evolving source density $\propto(1+z)^{m}$
Energy losses with CMB and IRB simulated $z<0.7, B_{\text {IG }}<10^{-10} G$

E. Kido, ICRC2015

Composition

TA Composition - Stereo

Proton $X_{\max }$ resolution, $E \geq 10^{18.4} \mathrm{eV}$

7 years data - all FD stations (excluding TALE) - 38 telescopes Events must be observed by multiple FDs
$\log _{10}(E / e V)>18.4$
1160 events
$X_{\max }$ resolution $\sim 19 \mathrm{~g} / \mathrm{cm}^{2}$, reconstruction bias $\sim 1 \mathrm{~g} / \mathrm{cm}^{2}$
Energy resolution ~ 6\%

TA Composition - MD Hybrid

J.P. Lundquist, ICRC2015

R. Abbasi et al., Astropart.Phys. 64 (2014)

7 years of MD FD hybrid data - 623 events [$\log _{10}(E / e V)>18.4$] Improved reconstruction via pattern recognition method \rightarrow ensures curvature of profile is well measured.
$X_{\max }$ resolution $\sim 22 \mathrm{~g} / \mathrm{cm}^{2}$, reconstruction bias $<2 \mathrm{~g} / \mathrm{cm}^{2}$
Energy resolution ~ 7\%

TA Composition - BR/LR Hybrid

W. Hanlon, ICRC 2015

6 years $B R / L R$ hybrid composition
$X_{\text {max }}$ resolution $20 \mathrm{~g} / \mathrm{cm}^{2}$
"Standard" quality cuts:
zenith < 57 degrees
Profile \& geometry chi^2 cuts
$X_{\text {max }}$ bracketing
track length > 10 degrees

Highest statistics composition - 2211 events
vs. 1160 (stereo)
vs. 623 (MD hybrid)

TA Composition - Comparison to Models I

Iron is ruled out. Light composition is favored above $10^{18.2} \mathrm{eV}$.

Composition - Statistical Tests

Cramér-von Mises test

$$
\omega^{2}=\int_{-\infty}^{\infty}\left[F_{n}(x)-F^{*}(x)\right]^{2} d F^{*}(x)
$$

No binning required
Uses square of the differences of the cumulative distributions
Removes problems in comparing only 1st and 2nd moments which get pulled heavily by missing or poorly sampled tails.

TA Composition - Comparison to Models II

TA is consistent with light composition below $10^{19.5} \mathrm{eV}$.

TA data excludes iron using all QGSJet, Sibyll, EPOS models. Nitrogen is disfavored as well.

Anisotropy

TA Anisotropy - Method

Period: 2008 May - 2015 May (7 years) Angular resolution: $\sim 1^{\circ}$

Cuts:

\# of counters >= 4
zenith angle < 55°
energy > 57 EeV
loose boundary cut

Procedure:

- For each point on the sky map grid, cosmic ray events are summed in 20° circles (oversampling): $N_{\text {sig }}$
- Generate $100,000 \mathrm{MC}$ sets assuming isotropic flux and geometric exposure, sum in 20° circles: N_{bg}
- Normalize N_{bg} to the total number of data events observed.
- Significance is excess is computed using Li-Ma.
- Chance probability to observe this excess: Generate 1 million MC sets each having $N_{\text {sig }}$ events for uniform distribution over TA SD exposure, max significance is calculated for each set. Count the sets that have signficiance $>=$ that found in "hotspot".

TA Anisotropy - Hotspot (7 yr update)

First 5 year data $\rightarrow 72$ events, 3.4σ [ApJ 790 L21 (2014)] New 2 year data $\rightarrow+37$ events, 3.4σ
Total 109 events (7 years SD, 2008 May 11 - 2015 May 11)
K. Kawata, ICRC2015

Period	Total $(\mathrm{E}>57$ $\mathrm{EeV})$	Hotspot signal	Background	Chance Prob (\%)	Center position (RA/Dec)
6th year	15	3	0.94	7	$146.7^{\circ}, 43.2^{\circ}$
7th year	22	1	1.37	74	$146.7^{\circ}, 43.2^{\circ}$
6th + 7th year	37	4	2.31	20	$146.7^{\circ}, 43.2^{\circ}$

TA Anisotropy - Significance Map

Max significance $5.1 \sigma\left(N_{\text {sig }}=24, N_{\text {bg }}=6.88\right)$ for 7 years SD data Centered at RA/Dec $=148.4^{\circ}, 44.5^{\circ}$ (Shifted from SGP by 17°) Global excess chance probability: $3.7 \times 10^{-4} \rightarrow 3.4 \sigma$

p-air Cross Section

Measuring $\sigma_{p-a i r}$

Depth of first interaction X_{1}. Slope is direct measure of $\lambda_{\mathrm{p} \text {-air }} X_{1}$ depends only

 on $\sigma_{\text {p-air }}$.
Not observed by FDs though.

Air shower development after X_{1} is affected by fluctuations in first interaction depth, as well as hadronic cross section, inelasticity, multiplicity.

\author{

* Model dependence
}

Radar Cross Section

TA Radar (TARA)

Bistatic radar technique
25 kW CW, 54.1 MHz transmitter (max cap 40 kW - 8 MW ERP) 22.6 dBi gain $\rightarrow 5 \mathrm{MW}$ ERP

4 channel, $250 \mathrm{MS} / \mathrm{s}$, broadband, dual polarization receiver Trigger logic: on-the-fly chirp match filter or FD coincidence Chirp detection limit via match filter: ~ -10 dB
Chirp frequencies expected: ~1-10 MHz/usec

TARA Radar Echo Simulation

Frequency response is not model dependent
Signal response is model dependent (collisional dampening, electron recombination time, EAS core free electron density)
$P=\frac{P_{T} G_{T}}{4 \pi R_{T}^{2}} \sigma_{T W} \frac{G_{R} \lambda^{2}}{(4 \pi)^{2} R_{R}^{2}}$
$\sigma_{\text {TW }}=$ thin-wire radar cross section

TARA RCS Upper Limit Measurement

Date	$\Gamma_{90} \times 10^{4}$	Energy (EeV)
20130809	$8.4+5.0$	1.22
20130816	$8.8+2.0$	1.43
20130926	$9.7+2.8$	1.38
20131105	$9.2+3.9$	1.83
20131202	$5.2+2.5$	11.04

RCS calculation:

- insert simulated chirp waveform in snapshots with scale factor Λ
- find Λ_{90} such that 90% of snapshots exceed threshold
- $\Lambda_{90}{ }^{2}=\Gamma_{90}$, proportional to RCS
$-\sigma_{\text {EAS }}<\Gamma_{90} \times \sigma_{\text {TW }}$ (90% c.l.)

Peak RCS ~ 42 cm 2 (11.04 EeV event)

TA Expansion (TA × 4)

Fourfold increase in the size of the TA SD array.
Add 500 scintillator SDs @ 2.08 km spacing.
Add 2 FD stations, 28 telescopes

Get 20 TA years of data by 2020.
Increased statistics for highest energy range (> 57 EeV) to answer the question of the hotspot.

Proposals:
SD:April2015. Approved in Japan!
FD: October 2015 submission

See Dr. Hiroyuki Sagawa's presentation @ 17:30 for further discussion.

Conclusions

- TA has entered its 8th year of data collection
- TA measured the energy spectrum, composition, arrival directions, cross section of UHE cosmic rays.
- TA/TALE covers 4.4 decades in energy and observes 4 distinct spectral features.
- The spectrum \& composition above the ankle remains consistent with a predominantly light primary above $10^{18.4} \mathrm{eV}$.
- We have extended our measurement of the hotspot in the vicinity of Ursa Major with 2 years of additional data, and see hints of anisotropy with 3.4σ significance.
- TAx4: Fourfold expansion of TA SD array is approved \rightarrow more data to answer questions about the hotspot.

Supplemental Material

TA Anisotropy - Nearby Galaxy Clusters

Dots : 2 MASS catalog Heliocentric velocity $<3000 \mathrm{~km} / \mathrm{s}(\mathrm{D}<\sim 45 \mathrm{MPC})$
All-sky significance: TA Northern and PAO southern.
No energy scale correction between TA \& PAO.

TA Anisotropy - Nearby Prominent Sources

Suggested possible sources near Ursa Major cluster:
Blazar Mrk 421 (134 Mpc)
K. Fang et al., ApJ 794, 126 (2014)

Blazar Mrk 180 (192 Mpc)
Starburst galaxy M82 (3.4 Mpc)

TA \& PAO Anisotropy - All-sky survey

TA: 109 events, 7 years exposure
PAO: 157 events, 10 years exposure
No energy scale correction between TA \& PAO is applied

Northern hotspot near Ursa Major Cluster Southern hotspot at Centaurus A

Composition Model Dependence

Prediction: mean reconstructed $X_{\max }$ vs. energy

Measuring $\sigma_{p-a i r}$

$d N / d t=L \sigma$

$P(x)=\exp (-x / \lambda)$
FDs don't observe X_{1}. Too far, too dim, out of the FOV.

Air showers: X_{1} depends only on particle total cross section. Any arbitrary point in shower after depends on model dependent fluctuations (multiplicity, inelasticity, cross section).

Choose $X_{\text {max }}$ as the observation point, examine models to measure fluctuations between X_{1} and $X_{\max }$.

Minimum depth viewed of a shower
as a function of core distance

TA σ total
 measurement pp

B (forward scattering elastic slope) relates $\sigma_{p-\text { air }}$ (inel) to σ_{p-p} (tot). Constant values of $\sigma_{p \text {-air }}$ (inel) are shown. Intersection with BHS fit gives σ_{p-p} (tot).

TA first measurement of σ_{p-p} (tot) shown in red.
Dashed line is BHS QCD inspired fit to pp and pp-bar Tevatron data. Auger, HiRes, TA data are consistent with this prediction.

$$
\begin{aligned}
& \sigma_{p-p}(\text { tot })=170(+48,-44)[\text { stat }](+19,-17)[\text { sys }] \\
& \sqrt{s}=95 \mathrm{TeV}
\end{aligned}
$$

Bistatic Radar Technique

- Radar cross section depends on charged particle density.
- Plasma frequency goes as square root of charged particle density.
- NKG approximation estimates radar frequency of 54.1 MHz exceeds the plasma frequency within 1 cm of the core.
- Thin wire approximation.
- Carrier signal scattered.

$$
\nu_{e}=\sqrt{\frac{n_{e} e^{2}}{m_{e} \epsilon_{0}}} \frac{1}{2 \pi}
$$

Theory of Radar Detection of EAS

- Particles with energy $>10^{17} \mathrm{eV}$ should produce ionization densities ($>10^{13} / \mathrm{m}^{3}$) great enough to scatter EM radiation around $10-100 \mathrm{MHz}$.
- Directly interrogate the overdense region of the EAS with sounding frequency which is specularly reflected by plasma (this is not emission from the shower).
- Scattering is greatest in the forward direction.
- Bistatic radar setup gives best chance of detection of radar echos.

$$
P_{t}=P_{r}\left(\frac{G_{t}}{4 \pi R_{t}^{2}}\right)\left(\frac{G_{r}}{4 \pi R_{r}^{2}}\right) \sigma\left(\frac{\lambda^{2}}{4 \pi}\right)
$$

TX -> target -> RX path
geometry
radar cross
section
RX effective area

