High Energy cosmic-Radiation Detection (HERD) Facility onboard China's Space Station

Ming Xu mingxu@ihep.ac.cn

Institute of High Energy Physics, Chinese Academy of Sciences INTEGRAL Science Data Center, University of Geneva

China's Space Station Program

HERD: High Energy cosmic-Radiation Detector

Science goals	Mission requirements	
Dark matter	R1: Better statistical measurements	
search	of e/y between 100 GeV to 10 TeV	
Origin of	R2: Better spectral and composition	
Galactic	measurements of CRs between	
Cosmic rays	300 GeV to PeV* with a large	
Coonno rayo	geometrical factor	

Secondary science: γ -ray astronomy \rightarrow monitoring of GRBs, microquasars, Blazars and other transients \rightarrow down to 100 MeV for γ -rays \rightarrow plastic scintillator shields for γ -ray selection *complementary to high altitude cosmic-ray observations

HERD Cosmic Ray Capability Requirement

Characteristics of all components

	type	size	Χ0,λ	unit	main functions
tracker (top)	Si strips	70 cm × 70 cm	2 X0	7 x-y (W foils)	Charge Early shower Tracks
tracker 4 sides	Si strips	65 cm × 50 cm	2 X0	7 x-y (W foils)	Charge Early shower Tracks
CALO	~10K LYSO cubes	63 cm × 63 cm × 63 cm	55 X0 3 λ	3 cm × 3 cm × 3 cm	e/γ energy nucleon energy e/p separation

Expected performance of HERD

γ/e energy range (CALO)	tens of GeV-10TeV
nucleon energy range (CALO)	up to PeV
γ/e angular resol. (<mark>STKs</mark>)	0.1°
nucleon charge resol. (STKs)	0.1-0.15 c.u
γ/e energy resolution (CALO)	<1%@200GeV
proton energy resolution (CALO)	20%
e/p separation power (CALO)	<10 ⁻⁵
electron eff. geometrical factor (CALO)	3.7 m ² sr@600 GeV
proton eff. geometrical factor (CALO)	2.6 m ² sr@400 TeV

Acceptance & H-energy > n10X all others

Other detectors: Top down \rightarrow "small" FoV

HERD Design: 3D Calo & 5-Side Sensitive

n10X acceptance than others, but weight 2.3 T~1/3 AMS STK(W+SSD) Charge gamma-ray direction CR back scatter **3D CALO** e/G/CR energy STK(W+SSD) e/p discrimination

Simulation results: energy resolutions

Electron < 1%; Proton: ~20% Essential for spectral features!

HERD Eff. Geometrical Factor: CALO

DM annihilation line of HERD

HERD sensitivity to gamma-ray line

PAMELA: 2006-2016 CALET: 2015-2020; AMS: 2011-2021; DAMPE: 2015-2020; Fermi: 2008-2018; HERD: 2020-2021

Expected HERD Proton and He Spectra

Expected HERD Spectra of C and Fe

Gamma-ray Sky Survey Sensitivity

CALO readout

Proof of principle

2×2×6 CsI crystal array

ICCD image of cosmic ray events

HERD progress – ICCD development

Scintillator signal readouts

LYSO scintillator → WLSF

Optical fiber winding

Crystal packing

• Fiber to ICCD system

Fiber Image on CCD

Signal: 3000 pe; gain of image intensifier: 4000

CERN Beam Test in Nov 10-20, 2015

Requirements on the prototype

- Requirement on dynamic range: ~6000
 - Starting from 1/3 MIPs=10 MeV
 - Ending at max. energy deposition: 60 GeV

Requirement on frame rate of ICCD: > 500 fps

 Since the electrons arrive randomly in time

Requirements on the prototype

- Scale of the prototype: 5×5×10, 3×3×3 cm³
 - Larger than envelope of 280 GeV e- shower

- 36% of the total energy for protons

LYSO performance

Realization of two readout ranges

Signal ratios ~ 50:1

Making ESR wrapping

Assembly and lab test of the prototype

1st HERD workshop, Oct.17-18, 2012, IHEP, Beijing

2nd HERD Workshop @IHEP 2013/12/2-3

The HERD Proto-Collaboration Team

- Chinese institutions (more welcome!)
 - Institute of High Energy Physics, Purple Mountain Observatory, Xi'an Institute of Optical and Precision Mechanics, University of Science and Technology of China, Nanjing University, Peking University, Yunnan University, China University of Geosciences, Ningbo University, Guangxi University
- International institutions (more welcome!)
 - Switzerland: University of Geneva
 - Italy: Università di Pisa/INFN, IAPS/INAF, University of Florence/INFN, University of Perugia/INFN, University of Trento/INFN, University of Bari/INFN, University of Salento/INFN-Lecce
 - Sweden: KTH
 - USA: MIT/Harvard