Future plans for astro-particle physics activities (CSN2) at LNF

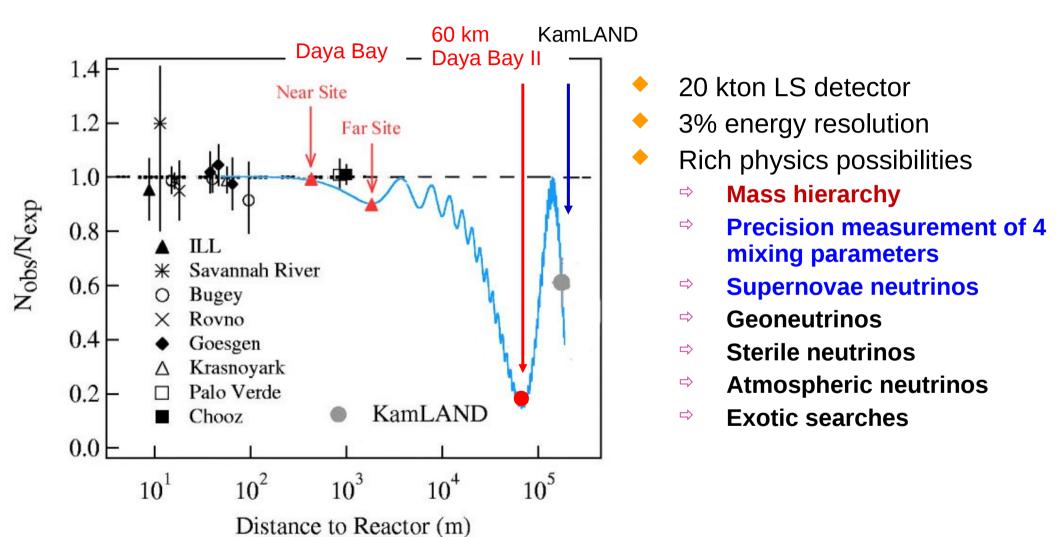
A. Paoloni

LNF Scientific Committee

November 13th 2015

CSN2 LNF groups

Group	Researcher FTE (pers)	Technologist FTE (<u>pers</u>)	Technician FTE (pers)	Closing activity
OPERA	2.0 (6)	0 (0)	2.5 (4)	*
Nessie.DTZ	0.1 (1)	0 (0)	0 (0)	
JUNO.DTZ	0.5 (3)	0 (0)	0 (0)	
ICARUS.DTZ	0.2 (3)	0 (0)	0.5 (1)	
T2K.DTZ	0.4 (1)	0 (0)	0 (0)	
CUORE.DTZ	0 (0)	1.6 (3)	0 (0)	*
КМЗ	1.2 (2)	0.6 (1)	0.5 (1)	
Wizard	1.8 (4)	0 (0)	0 (0)	
Jem-EUSO-RD	2.1 (4)	0.6 (2)	0 (0)	
Limadou.DTZ	0.1 (1)	0.4 (1)	0 (0)	
ROG	1.6 (5)	0 (0)	1.3 (2)	*
Moonlight-2	6.5 (10)	2.0 (5)	1.7 (3)	


CUORE: technical support during installation, supposed to end in 2015. **T2K, ICARUS, LIMADOU**: small contributions; no support required to the laboratory.

CSN2 LNF groups

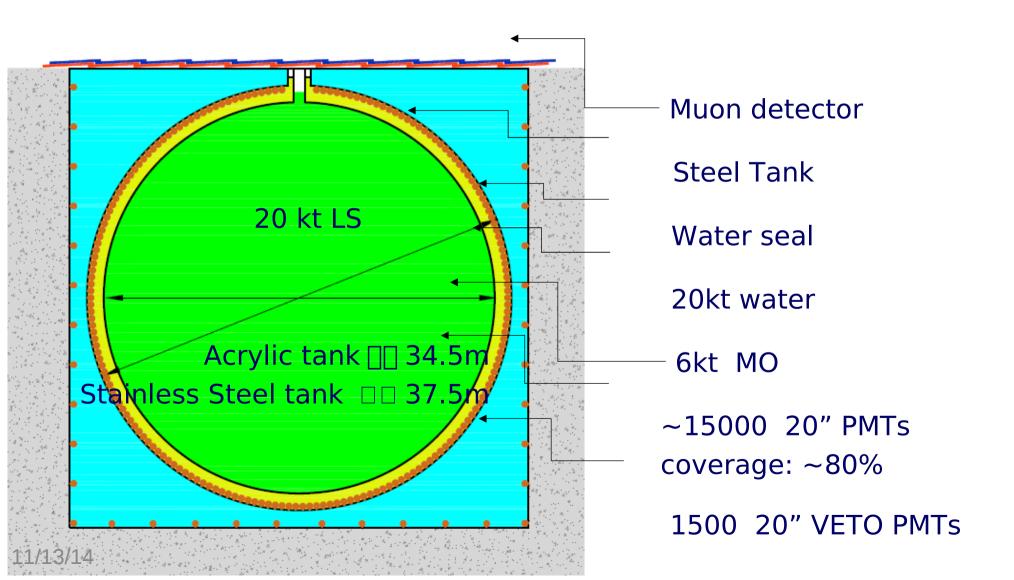
Main	Group	Researcher FTE (pers)	Technologist FTE (pers)	Technician FTE (pers)	Closing activity
On-going/future activities	OPERA	2.0 (6)	0 (0)	2.5 (4)	
activities	Nessie.DTZ	0.1 (1)	0 (0)	0 (0)	
	JUNO.DTZ	0.5 (3)	0 (0)	0 (0)	
	ICARUS.DTZ	0.2 (3)	0 (0)	0.5 (1)	
	T2K.DTZ	0.4 (1)	0 (0)	0 (0)	
	CUORE.DTZ	0 (0)	1.6 (3)	0 (0)	*
	KM3	1.2 (2)	0.6 (1)	0.5 (1)	
	Wizard	1.8 (4)	0 (0)	0 (0)	
	Jem-EUSO-RD	2.1 (4)	0.6 (2)	0 (0)	
	Limadou.DTZ	0.1 (1)	0.4 (1)	0 (0)	
	ROG	1.6 (5)	0 (0)	1.3 (2)	*
	Moonlight-2	6.5 (10)	2.0 (5)	1.7 (3)	

CUORE: technical support during installation, supposed to end in 2015. **T2K, ICARUS, LIMADOU**: small contributions; no support required to the laboratory.

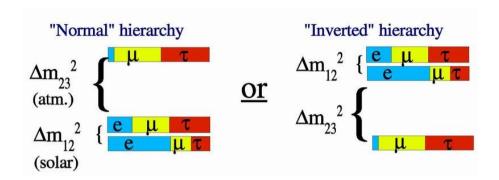
The JUNO Experiment

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103,2008; PRD79:073007,2009

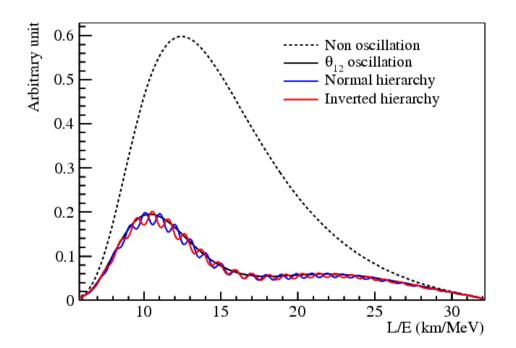
The Site



	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW , 9.2 by 2020


The plan: a large LS detector

- LS volume: × 20→ for more mass & statistics
- light(PE) × 5→ for resolution


40 events/day

Mass Hierarchy at Reactors

$$\begin{array}{rcl} \Delta m_{31}^2 &=& \Delta m_{32}^2 + \Delta m_{21}^2 \\ \mathrm{NH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \mathrm{IH}: & |\Delta m_{31}^2| &=& |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{array}$$

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13})\sin^2(2\theta_{12})\sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{32})$$

Significance > 3 σ obtainable after 6 years exposure if target energy resolution is reached.

Better than 1% resolution on Δm_{21}^2 , Δm_{32}^2 , $\sin^2(\theta_{12})$.

Current Status & Brief Schedule

- Project approved by CAS for R&D and design
- Geological survey completed
- •Granite rock, tem. ~ 31 °C, little water
- Engineering design underway, contract signed
- Land is acquired, civil construction approval underway

Schedule:

Civil preparation ☐ 2013-2014

Civil construction □ 2014-2017

Detector R&D □ 2013-2016

Detector component production □ 2016-2017

PMT production □ 2016-2019

Detector assembly & installation □ 2018-2019

Filling & data taking □ 2020

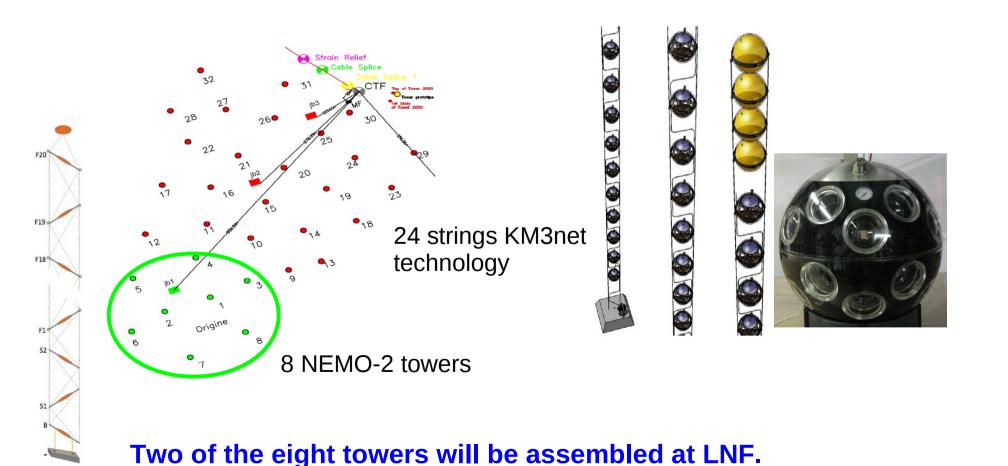
JUNO collaboration

JUNO is a chinese experiment with contributions from:

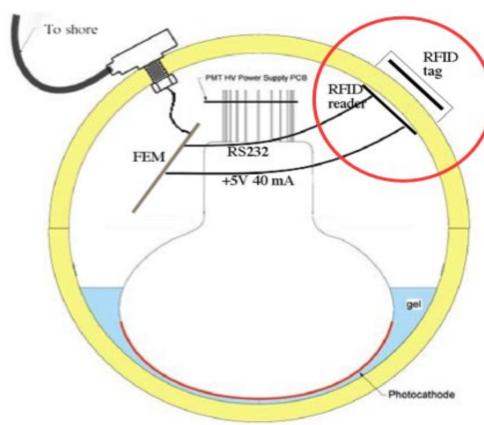
INFN (Milano, Ferrara, Perugia, Frascati, Padova, Roma3), France, Germany, Russia, Cech Republic and USA.

The participation is approved by INFN, with an extra-budget (besides CSN2 funding) of 7 MEuro for scintillator purification.

LNF contribution:


The OPERA Target Tracker will be employed as a Top Tracker in JUNO. The Hamamatsu 64 ch MAPMT are INFN property.

New DAQ and trigger system for the Top Tracker is needed for the utilization in JUNO.


KM3 General Situation

20 Meuro budget from PON projects assigned for placing the orders of 8 towers (NEMO2-like), 24 strings (KM3net-like) and the relative infrastructures (before the end of November).

1 tower and 1 string prototypes are at present deployed and under test.

KM3 LNF group activity

PORFIDO

Physical Oceanography by RFID Outlook

Use neutrino telescopes infrastructure (power, communication) for oceanographic measurements

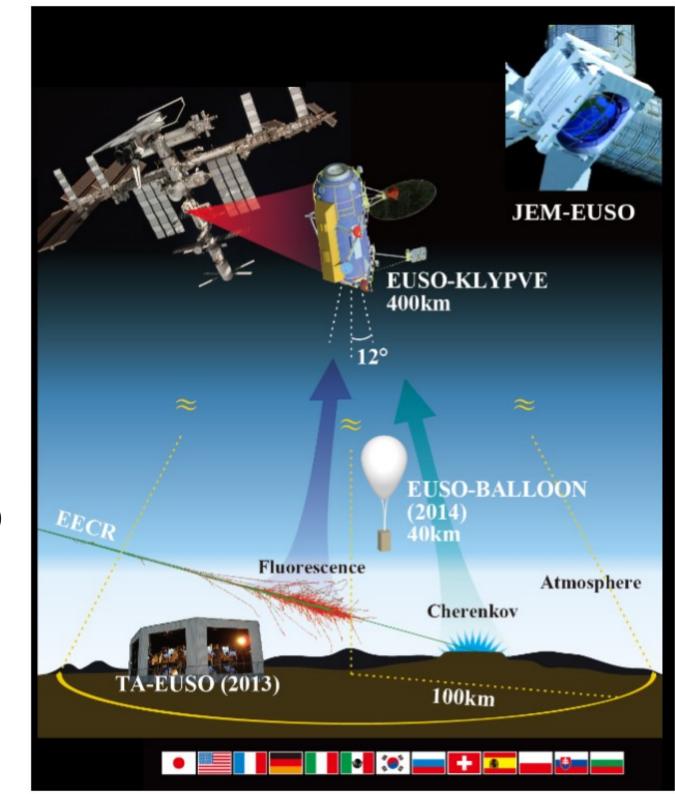
(Temperature, salinity, water mass movements)

- RFID communication through OM glass without connectors
- Very little interference with detector
- Very little bandwidth to-from shore
- Very little power
- continuous data taking
- · data rate controlled from shore

Jem-EUSO-RD

EUSO program:

Pathfinders: EUSO-balloon EUSO-TA mini-EUSO


Klypve-EUSO on russian ISS module

LNF group activity:

PDM (Photo Detector Module) design (support by SPCM service).

Balloon tests.

M. Ricci national responsible.

Jem-EUSO-RD pathfinders

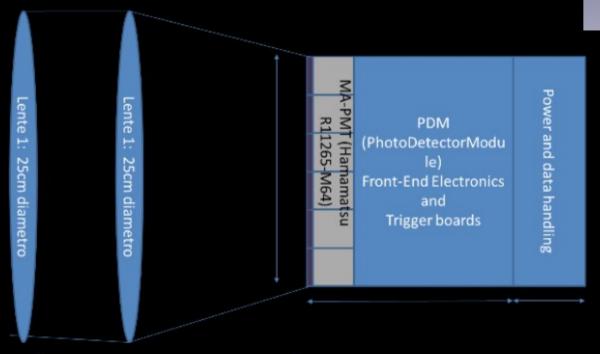
EUSO-balloon: in August 2014 successful launch from Canada and data-taking.

EUSO-TA: cross calibration tests on Telescope Array site (Utah) to start data-taking next year.

mini-EUSO A precursor of JEM-EUSO on board ISS

Proposed to ASI (Italian Space Agency) in response to a call 2012 for Human Spaceflight

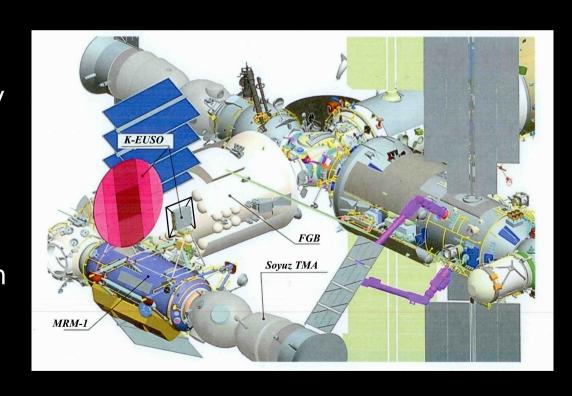
Selected by ASI, July 2013 (Resources, upload mass, crew time) Approved by Roscosmos/STAC Committee May 2014 and selected for UV window on Zvesda Module, Russian Segment ISS


Launch foreseen on 2016.

 $\overline{JEM} ext{-}EUSO$ on ISS explores the origin of the highest energy particles

Mini-EUSO

Bring one PDM (36 PMTs) and two Fresnel lenses (25 cm diam.) to ISS and expose it to an ISS UV window

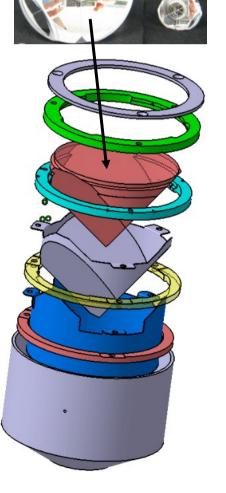


Unique opportunity to measure ultra-violet background.

The Main Mission Intermediate Step JEM-EUSO on Russian Module KLYPVE-EUSO

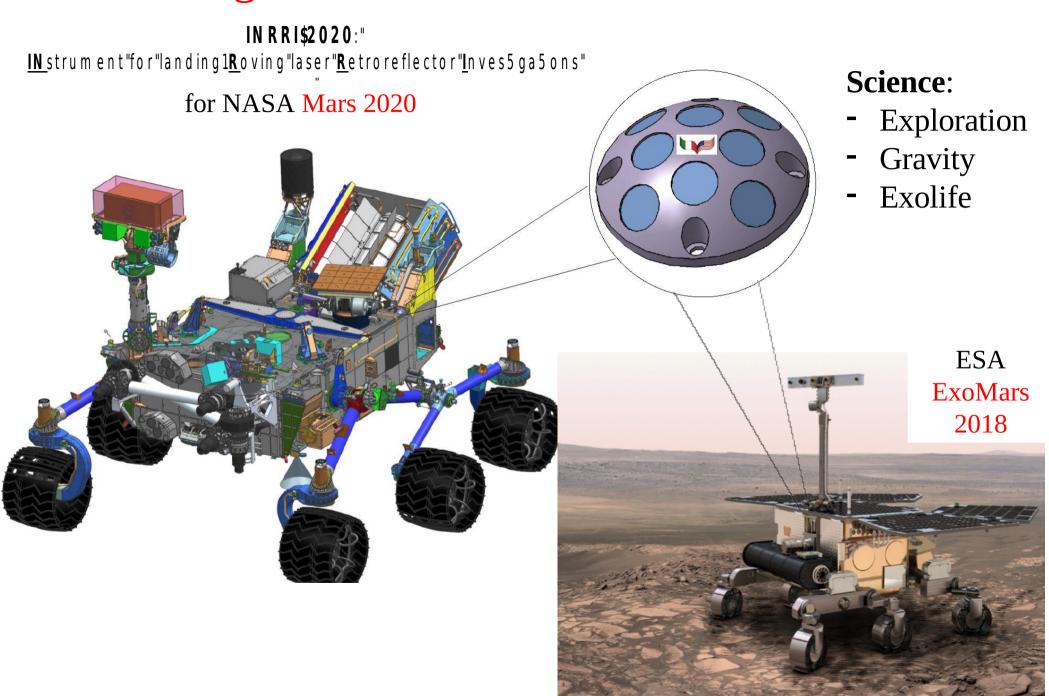
- Included in the Russian Federal Space Program
- Passed the stage of preliminary design (pre-phase A)
- Technical requirements (specifications) defined, based of the preliminary design
- Optimization studies (mainly on the optics)
- ☐ K-EUSO Official Mission Name

Under study.....



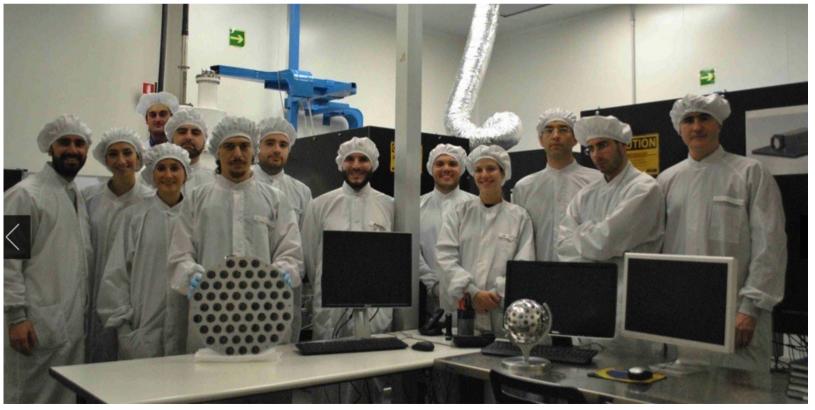
MoonLIGHT-2: 1-kg Lunar Reflector

Goal: Precision tests of General Relativity

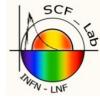

Missions: Luna-27 (Russia, 2019), Chang'e-4/5 (China, 2016/2017); Moon Express (US, commercial, 2016)

MoonLIGHT& Apollo

Precision test of General Relativity	Time scale	Apollo/Lunokhod few cm accuracy*	MoonLIGHT	
Relativity	scale	few cm accuracy*	1 mm	0.1 mm
Parameterized Post-Newtonian (PPN) β	Few years	β-1 <1.1×10-4	10-5	10-6
Weak Equivalence Principle (WEP)	Few years	$ \Delta a/a < 1.4 \times 10 - 13$	10-14	10-15
Strong Equivalence Principle (SEP)	Few years	$ \eta $ <4.4×10-4	3×10-5	3×10-6
Time Variation of the Gravitational Constant	~5 years	Ġ/G <9×10-13yr-1	5×10-14	5×10-15
Inverse Square Law (ISL)	~10 years	α <3×10-11	10-12	10-13
Geodetic Precession	Few years	Kgp <6.4×10-3	6.4×10-4	6.4×10-5


INRRI: 50-gr reflectors for Mars Rovers

SCF_Lab @INFN Frascati (Rome) next to ESRIN


SCF_Lab = Satellite/lunar/GNSS laser ranging/altimetry & Cubesat/microsat Characterization Facilities Laboratory

2 unique **OGSE** (Optical Ground Support Equipment) in a clean room for thermal-optical-vacuum characterization of laser retroreflectors in representative, and (very) critical space environmental conditions

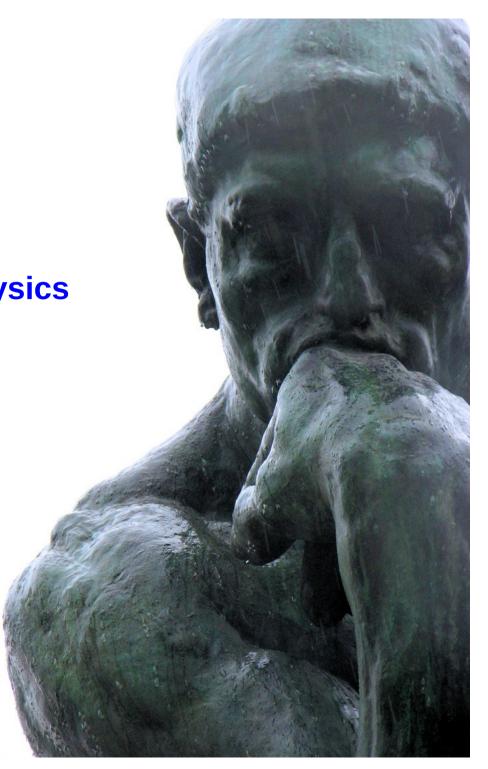
Affiliation of INFN to NASA/SSERVI

- SSERVI, Solar System Exploration Research Virtual Institute
 - Centrally managed by NASA-ARC, <u>sservi.nasa.gov</u>
- Solar system Payloads of laser Retroreflectors of INfn for General reLativity, Exploration and planeTary Science
- INFN: 1st Italian Partner of SSERVI
- Others: UK, Germany, Canada, Korea Netherlands, Israel, Saudi Arabia

CSN2 LNF group future activities summary

```
v oscillation physics: 3.2 FTE (1.8 staff FTE). OPERA will be closed in 2016. ICARUS, T2K small activities. In the future, either Nessie (sterile v at FNAL) or Juno (neutrino mass hierarchy).
```

Cosmic rays with ground based detectors: 1.2 FTE (0.8 staff FTE). **KM3** on-going.


Cosmic rays with space based detectors: 5.0 FTE (2.6 staff FTE). **Wizard** (PAMELA) in data analysis queue. **Limadou** small participation. In the future, **Jem-EUSO-RD**.

General Physics: 8.5 FTE (1.2 staff FTE + 3.1 FTE associated from other institutions). **Moonlight-2** on-going.

Note: for the FTE calculations shown in this page, technicians have not been taken into account.

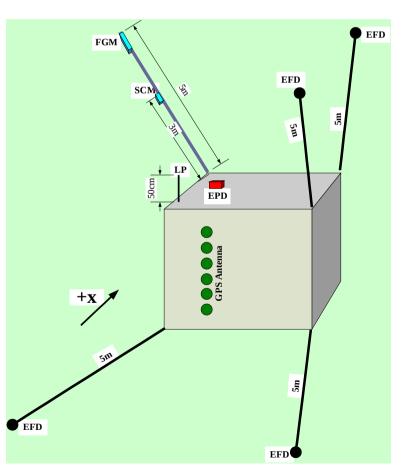
What next LNF: Perspectives of fundamental physics at the Frascati Laboratory.

10-11 November 2014

INFN AND SPACE ACTIVITIES

Proposal:

LNF to support space based activities for INFN?


- Quite unique opportunity
 - Frascati could be the only place in which space detectors could be tested with particle beams and (maybe) laser in thermo-vacuum conditions
 - Frascati has already long experience and some infrastructures
 - A good opportunity, in my opinion, for the future of the main INFN laboratory
 - Frascati may play a role for management of Svalbard balloon launch facilities under ASI contract (later)
- Of course:
 - We should not duplicate existing facilities in Perugia/Terni, Tor-Vergata and everywhere else in Italy (I do not have yet a global view. I am working on it).
- We need a global plan!

LIMADOU - CSES

Study of perturbations on magneto-spheric perturbations and their correlation with seismic phenomena.

Satellite

Payload Instruments:

- Particle Detector Analyser (PDA).
 - Energy range: 300 KeV÷ 100 Mev
- Pitch angle accuracy < 4° with particle identification
- Electric Field Analyser (EFA)
 - frequency range: ~DC ÷ 10 MHz
 - accuracy: 300 nV/m
 - dynamic range: 120 dB
- Magnetic Field Analyser (MAFA)

<u>FLUX – GATE</u>: • frequency range: ~DC ÷ 10 Hz

- accuracy: a few (6-8) pT
- resolution: 24 bit

SEARCH – COIL: • frequency range: ~10 Hz ÷ 100 kHz

- sensitivity:10-2 pT /(Hz)½ (at 1 kHz)
- Langmuir Probe & Retarding Potential Analyser

<u>LP:</u> • electron temperature: 300 ÷ 15000 K

• electron density: 102 ÷ 107 cm-3

RPA: • ionic temperature: 300 ÷ 10000 K

• ionic density: 102 ÷ 107 cm-3