Summary of the SPARC_LAB activities

Massimo.Ferrario@LNF.INFN.IT On behalf of the SPARC_LAB collaboration

LNF- November 12, 2014

Outline

- First X-ray from Thomson source observed
- First Thz source external user made happy
- First seeded two colors FEL experiment done
- New short period undulator installed and tested
- Plasma interaction chamber off line test under way
- Linac and FLAME wide maintenance and upgrade needed
- More technical and prompt support needed
- 3 Horizon 2020 proposal submitted

SPARC_LAB Welcomes:

- Prof. Arie Zigler (Hebrew University of Jerusalem) 1 year sabbatical
- Prof. Jamie Rosenzweig (UCLA) 7 months sabbatical
- Dr. Weiwei Li, PhD student from University of Science and Technology of China, 15 momths
- Dr. Alex Brynes, post doc from STFC, 3 months
- **3 new PhD students form University of Roma**

Thomson backscattering

Task Name			Jan				Feb			Mar				
lask Name	ec 30	Jan 6	Jan 13	Jan 20	Jan 27	Feb 3	Feb 10	Feb 17	Feb 24	Mar 3	Mar 10	Mar 17		
	¢ e	2,⊕,												
SL_Thomson														
Machine Warm Up & Controls					N	lachine Warr	m Up & Con	trols						
Test low level RF for ELI_NP				Te	est low leve	RF for ELI_	NP							
Laser pulse shaping						aser pulse s	haping							
Collisions Test						+					Collis	ions Test		
First X-ray signal observed										First X	-ray signal o	bserved		
							Cour	tesy	C. V	acca	arezz	za		

Thomson Interaction region (20-550 keV)

Thomson back-scattering source

carica (pC)	energia (MeV)	<u>enx</u> (mm <u>mrad</u>)	<u>eny</u> (mm <u>mrad</u>)	I <u>P sigmax</u> mm	IP sigmay (mm)
230	157	2.7	4.5	.50	.55
220	75	2.9	5	.28	.36
230	50	1.2	2.3	.17	.18

Working Point: electron beam and FLAME

pulse

Electron Beam	Units	WP Parameters	FLAME laser pulse	FLAME laser pulse Units			
Energy	MeV	50	Pulse Energy	J	0.5		
Energy Spread	%	0.1 ± 0.03	Wavelength	nm	800		
Pulse Length	ps	3.1 ± 0.2	Pulse Length	ps	6		
Spot Size	μm	90 ± 3	Spot Size	μm	10		
Charge	pС	200	Repetition	Hz	10		
Emittance	mm mrad	1.5 : 2.2 ± 0.2	Rate	112	10		

• Electron beam spot size had to be of 50µm. Because of a limit in the magnet cooling system, the solenoid upstream the IP could be used at 70% of its nominal value.

In this condition the minimum rms spot size was of about 90 $\mu m.$

• <u>Best results</u> obtained with $\sigma_{x-y} = 240 : 160 \pm 10 \ \mu\text{m}$.

Emitted X-Rays: First Commissioning

Results

- Two type of measurements of the X-Rays:
 - 1. 20 GHz BW oscilloscope for a fast response.
 - 2. <u>Multichannel analyser</u> to acquire an integral measurement over various interactions.
- Best results obtained with $\sigma_{x-y} = 240$: 160 ± 10 µm
 - 1. Average Energy: 60 keV
 - Number of photons for each pulse 6.7 × 10³
- <u>Poor overlap conditions</u> due to some misalignment of the interaction chamber can explain the difference between the measured number of photons for each pulse and the expected one.

Thomson x-rays signal in red, in black the electron background signal (without FLAME laser), <u>integrated</u> over 120 s (1200 pulses).

Courtesy of P. Cardarelli, P. Oliva, G. Di Domenico INFN-FE P. Delogu INFN-Pisa

Detector: Csl scintillator (20x20x2 mm) + Photo Multiplier Tube

Rear view (PMT)

Front view (shielding)

SPARC_LAB synchronization system

- Main RF Reference oscillator
 - RF system and laser oscillators locked to the reference through PLL
 - Electrical signal distributed through coaxial cable
 - Single sub-system VS reference time jitter
 <50fs_{RMS}
 - FLAME laser VS electrons time jitter (estimated) $<150 \mathrm{fs}_{\mathrm{RMS}}$

Synchronization measurements

Electron bunch time of arrival (2 bunch, max RF compression)

Conclusions and future experiments

- As <u>VERY</u> first commissioning results were obtained X-Rays with:
 - 1. Average energy: 60keV
 - 2. BW: 19%
 - 3. Number of photons per shot: 6.7×10^3
- In the shut-down were fixed some of the problems of the last experiment:
 - 1. Solenoid cooling system
 - 2. Re-alignment of the interaction chamber
 - 3. New electron dumping section was installed

THz and FEL

Tesk News	Ma	ır			Apr					May				J	un				Jul	
lask Name	r 10	Mar 17	Mar 24	Mar 31	Apr 7	Apr 14	Apr 21	Apr 28	May 5	May 12	May 19	May 26	Jun 2	Jun 9	Jun 16	Jun 23	Jun 30	Jul 7	Jul 14	Jul 21
	¢	Q, Q,																		
E FEL																		FEL		
FEL experiment: Seeded Comb						+							F	EL experime	ent: Seeded	Comb				
Seeded COMB observed												∳ s	eeded CON	IB observed						
EOS Comb													E	OS Comb						
Installation new undulator																	Installa	tion new un	dulator	
New undulator installed															♦ N	ew undulator	installed			
Beam test with new undulator																	B	eam test wit	n new undu	ator
Radiation observed																		🔶 Rad	iation obser	ved
THz					TI J	Ηz														
Experiment with THz 2					E	xperiment w	ith THz 2													
					•															

Courtesy F. Villa

The THz Source

Coherent Radiation from an aluminum-coated silicon screen (Courtesy E. Chiadroni)

Beam energy (MeV)	Charge (pC)	Pulse length (fs)	Frequency BW (THz)	Pulse energy (uJ)	Electric field (MV/cm)
120	500	100	5	20	1.5

Non-Linear THz Experiments on Condensed Matter Physics

Collaboration with TeraLab group leaded by Prof. S. Lupi (Univ. of Rome La Sapienza)

The THz Beamline Upgrade

The THz Beamline Upgrade

- At 0.5 THz the radiation spot is all within 10 cm
 - custom parabolic mirrors with diameter of 15 20 cm
- Low vacuum is needed (10-2 mbar)

A train of fs FEL pulses

two bunches with a two-level energy distribution and time overlap (Laser COMB tech.)

produce two wavelength SASE –FEL radiation with time modulation

$$\Delta t = \frac{\lambda_u \left(1 + K_{rms}^2\right)}{4c \left< \gamma \right> \left< \gamma_1 \right> - \left< \gamma_2 \right>}$$

2 Color Free-Electron Lasers SLAC

2 pulses with

-tunable energy difference

-tunable arrival time

Many applications!

- x-ray pump/x-ray probe
- 2 color diffraction imaging

PRL 110, 134801 (2013)	PHYSICAL REVIEW LETTERS	week ending 29 MARCH 2013
Experimental Demo	onstration of Femtosecond Two-Color X-Ra	y Free-Electron Lasers
A. A. Lutman, R. Coffee, SLAC	Y. Ding, [*] Z. Huang, J. Krzywinski, T. Maxwell, M. M National Accelerator Laboratory, Menlo Park, California 9 (Received 13 December 2012; published 25 March 2012)	esserschmidt, and HD. Nuhn 4025, USA 3)
PRL 111, 134801 (2013)	PHYSICAL REVIEW LETTERS	27 SEPTEMBER 2013
Multicolor Operation a	and Spectral Control in a Gain-Modulated	X-Ray Free-Electron Laser
A. Marinelli, ^{1,*} A. A. Lutman, ¹	J. Wu, ¹ Y. Ding, ¹ J. Krzywinski, ¹ HD. Nuhn, ¹ Y. Fer	ng, ¹ R. N. Coffee, ¹ and C. Pellegrini ^{2,1}
PRL 110, 064801 (2013)	PHYSICAL REVIEW LETTERS	week ending 8 FEBRUARY 2013
Chirped S	Seeded Free-Electron Lasers: Self-Standing for Two-Color Pump-Probe Experimen	g Light Sources Its
Giovanni De Ninno, ¹	² Benoît Mahieu, ^{1,2,3} Enrico Allaria, ² Luca Giannessi	i, ^{2,4} and Simone Spampinati ²
ARTICLE		
Received 8 Sep 2013 Accepte	d 12 Nov 2013 Published 4 Dec 2013 DOI: 10.	1038/ncomms3919
Two-colour	hard X-ray free-elect	tron laser
with wide tu	unability	
Toru Hara ¹ , Yuichi Inubusl Tadashi Togashi ² , Kazuaki	ni ¹ , Tetsuo Katayama ² , Takahiro Sato ^{1,†} , Hitos Togawa ¹ , Kensuke Tono ² , Makina Yabashi ¹ &	shi Tanaka ¹ , Takashi Tanaka ¹ , x Tetsuya Ishikawa ¹
PRL 111, 114802 (2013)	PHYSICAL REVIEW LETTERS	week ending 13 SEPTEMBER 2013
Observation	n of Time-Domain Modulation of Free-Elec by Multipeaked Electron-Energy Spect	ctron-Laser Pulses rum
V. Petrillo, ¹ M. P. Anania, ² M D. Di Giovenale, ² G. Di J	A. Artioli, ³ A. Bacci, ¹ M. Bellaveglia, ² E. Chiadroni, ² Pirro, ² M. Ferrario, ² G. Gatti, ² L. Giannessi, ³ A. Mos	² A. Cianchi, ⁴ F. Ciocci, ³ G. Dattoli, ³ tacci, ⁵ P. Musumeci, ⁶ A. Petralia, ³

R. Pompili,⁴ M. Quattromini,³ J. V. Rau,⁷ C. Ronsivalle,³ A. R. Rossi,¹ E. Sabia,³ C. Vaccarezza,² and F. Villa²

Two colors FEL: seeding

 To increase stability as well as intensity we added a laser seed at a wavelength at the average of the two FEL colors

Two colors FEL: seeding

• With seeding we achieved increase stability and intensity

Test of multistage cascade FEL at SPARC F. Ciocci

- Installation and first test of short period undulator.
- Simulation work
- Preliminary report ready

DELTA like undulator λ_u = 14 mm, gap 5mm, Br = 1.22T

Undulator tested in two stage SASE-FEL: 630nm to 315 nm

High-quality insertion devices for light sources

Experiment. Example: Short period section used as "afterburner"

Two different group of spectra in the same acquisition run: the intensity of the emission from the first five undulators seems to marginally affect the intensity in the last undulator.

May be explained as an effect of electron beam mismatch in the first five sections connected to machine temporal drifts;

In the last section, the beam is always strongly focused in both directions and a mismatch at the entrance of this short section do not produce a significant reduction of the signal. Simulations show that other effects, such as variation of energy spread or electron bunches duration (with consequent variation of peak current) reduce in the same ratio both signals

Beam dynamics studies for Plasma

Taok Name		Sep	·····			Oct				No	v				Dec	
lask Name	Sep 8	Sep 15	Sep 22	Sep 29	Oct 6	Oct 13	Oct 20	Oct 27	Nov 3	Nov 10	Nov 17	Nov 24	Dec 1	Dec 8	Dec 15	Dec 22
	000	Ð,														
SL_Thomson														S	Thomson	
Machine Warm Up & Controls						 										
Test low level RF for ELI_NP						1 1 1										
Laser pulse shaping						, , ,										
Collisions Test																
First X-ray signal observed						1 1 1										
Beam line upgrade						 										
Machine Warm Up				Machir	ne Warm Up	 										
Background Optimization				+		B	ackground (Optimizatio	'n							
SL_COMB						- 				,				S	COMB	
Laser Train Generation										L	aser Train G	eneration				
Beam Transport											+			B	eam Transpo	ort
SL_EXIN						 			s							
Ultrashort beam transport						 	+		U	Itrashort bea	im transport					

Litos, M. et al. *High-efficiency acceleration of an electron beamin a plasma wakefield accelerator*. **Nature** 515, 92–95 (2014).

Submitted to HORIZON 2020 FET, (ELBA, M. Ferrario, E. Chiadroni, A. Cianchi)

Quasi-Non Linear regime

Accelerating field

Plasma density

Linear

Quais-Non

Linear

Laser Comb technique:

generation of a train of short bunches

P.O.Shea et al., Proc. of 2001 IEEE PAC, Chicago, USA (2001) p.704. (Low charge regime only)
M. Ferrario. M. Boscolo et al., Int. J. of Mod. Phys. B, 2006 (High charge, Beam Echo)

Driving and witness bunches generation

Courtesy F. Villa

•2x50 pc +1x25pC

•rms spot: 33 um (driver 1 and driver 2), 13 um (witness) •rms emittance: 2 um (driver 1), 1.6 um (driver 2), 1.2 um (witness) •rms length: 31 um (driver 1), 55 um (driver 2), 7.4 um (witness) Courtesy R. Pompili

1

2

x 10

COMB plasma interaction chamber

COMB interaction chamber delivered in July 2014 Dedicated plasma lab needed

Courtesy M. P. Anania

Camera layout: first test version!

Total pumping capacity: 870 l/s.

First test: Argon – new tests

Vacuum pumps: 4 turbo pumps and 3 scroll pumps.

Vacuum pre-shot: 6 – 8 x 10⁻⁹ mbar

Impedence: 5 mm diameter, 10 cm length.

Capillary: <u>NEW DESIGN</u>! 3 cm length, 1 mm inner diameter with 800 μ m gas injection holes.

GOAL: shot-to-shot vacuum level below 9 x 10-7.

<u>APPROCH</u>: verify the vacuum level for different rep rate (1 - 5 and 10 Hz) and different electrovalve opening times (from 1 ms to 20 ms).

<u>RESULTS</u>: Way better than the last time! Vacuum level below 9*10-7 almost in all conditions. In particular, at 1 Hz rep rate, vacuum level is accettable with valve opening time up to 50 ms!!

Helium – more close to H2.

Rep rate	Opening time	Vacuum level after shot [mbar] Helium	Vacuum level after shot [mbar] Argon
1 Hz	1 ms	7.0E-8	1.2E-8
	5 ms	2.0E-7	1.0E-7
	10 ms	5.5E-7	1.4E-7
	15 ms	1.0E-6	2.6E-7
	20 ms	1.5E-6	4.5E-7
5 Hz	1 ms	9.0E-8	2.9E-8
	5 ms	6.5E-7	1.7E-7
	10 ms	1.5E-6	3.6E-7
	15 ms	8.3E-6	5.6E-7
	20 ms	6.0E-6	7.6E-7
10 Hz	1 ms	1.7E-7	4.7E-8
	5 ms	2.0E-6	3.4E-7
	10 ms	7.6E-6	7.9E-7
	15 ms	2.6E-5	1.3E-6
	20 ms	1.0E-4	1.9E-6

Longitudinal Potentials (Courtesy A. Brynes and B. Spataro)

- As the distance behind the bunch is increased, we see that there are no trapped modes in the wake potential as the oscillations become damped as increases
- Below is the wake potential for cavities #1 and #2 up to

Transverse Wakes

- Transverse impedance can be given as a function of transverse loss factor:
- E.g. Cavity #2 gives
- So
- ABCI gives
- If , this is negligible, so transverse wakes do not have a large effect

Interaction Layout

System upgrade

Optical reference

- RF reference will be substituted by fiber optical oscillator
- Fiber laser OMO (Optical Master Oscillator) installed and tested
- Systems locked through high resolution optical phase monitors (cross-correlators in house and ready to be tested)
- Fiber link stabilization is ongoing (order placed) to distribute the reference signal
- FLAME laser VS electrons estimated time jitter <50fs_{RMS}

Design Study on the "European Plasma Research Accelerator with eXcellence In Applications" (EuPRAXIA) Submitted to HORIZON 2020 INFRADEV, 4 years, 3 M€

TWO BEAM CONFIGURATION AT FLAME 1/2

A possible simple setup for Thomson scattering experiments with selfinjected electrons [1/2] (~compatible with existing setup)

• AB OAP: f/10, a₀~4-5

• TB OAP: to be defined (see below), $a_0 \sim 0.5$, but size (\rightarrow energy) depending on the e- beam emittance

Submitted to HORIZON 2020 FET (AOX, F. Boscherini, G. Gatti, L. Gizzi)

Next year

	Jan				Feb				Mar					Apr				
lask Name	Jan 12	Jan 19	Jan 26	Feb 2	Feb 9	Feb 16	Feb 23	Mar 2	Mar 9	Mar 16	Mar 23	Mar 30	Apr 6	Apr 13	Apr 20	Apr 27		
	0 Q	⊕,																
	·			FL	AME													
Beam set up for Thomson				Be	am set up i	for Thomsor	1											
SL_Thomson								s	L_Thomson									
Cathode Characterization & F			Ca	athode Chara	acterization	& Replacer	ment											
Machine Warm Up & Bruno's				Ma	chine War	m Up & Brur	no's Test											
Collisions Test				j	÷			C	ollisions Tes	t								
E FEL												FE	L					
Beam test with new undulator									÷			Be	am test wit	h new undula	ator			
= THz																Т	Hz	
Smith-Purcell Installation			S	mith-Purcell I	Installation													
Smith-Purcell Test													SI	mith-Purcell	Test			
Experiment with THz														÷		E	xpe	

SPARC_LAB Consolidation started

~3 years,~ 4 M€ allocated

- FLAME maintenance
- Injector upgrade (C-band, X-band)
- THz user beam line upgrade
- Thomson and Plasma beam lines final commissioning
- FEL new undulator

Ti:Sa FLAME laser

Il laser FLAME

Energia massima: 7J Energia massima sul target: ~5J Durata minima: 23 fs Lunghezza d'onda: 800 nm Larghezza di banda: 60/80 nm Spot-size @ focus: 10 µm Potenza massima: ~300 TW Contrasto: 10¹⁰

Hardware situation

High power pumping critical: Defective generation of Nd:Yags

Optical: Damage in the final amplifier of the pumps triggering othe damages in the chain

Electrical: Two power supply units failured

Cooling: One cooling unit failed repaired in house

Chiller failure

Laser Issues: Almost exclusive vendor (Amplitude). "Conventional Optics": Most of items are not in stock (almost 7 months waiting for large mirrors and Gratings). Admin: Justify costing is getting more and more difficult. Orders of magnitudes high even for conventional manteinance. 13k€=1lamp replacement, 10k€ 1 Nd:Yag pumping chamber 10k€ 1 power supply, small grat. 13k€, big grat. 20k€

Further Upgrades Needed

New Compressor Chamber about 80 K€ (+80k€ new gratings)

New Interaction Chamber about 50 K€

In vacuum camera

Very unconfortable chamber. Alignment very Unfavorable. Chromatic effect not fixed by A.O. arising (lateral colors). Grating supports not stable Almost not tunable. Massive diagnostics is needed. Preliminary design..waiting for news.

Very limited range of upgrades and Flexibility right now. Lot of experiments nearly Impossible. Need of space for multi- purpose bunker. Preliminary design...waiting for news.

New requests: final slides!

Trials still not satisfying: conventional cameras survive but noise arises. about 10 k€ for not specific camera.. otherwise much expensive.

PROPOSED SCHEME FOR SPARC: X-band structure for longitudinal phase space linearization + RF compressor

Fig.2:a) Prototype of the SWX-band linac, b) Electric field distribution on the axis computed by SUPERFISH

LOW CHARGE (250 pC) CALCULATIONS

USE OF A LONGITUDINAL PHASE SPACE LINEARIZER @SPARC WITH A COMB BEAM (period 2010-2011)

Figure 2.19: Longitudinal charge profile and phase space of the 4 pulses comb. The bunch has been over-compressed using S1 section. On top: comb at the exit of the linae it it travels on creat in the second and third accelerating sections. In the middle: comb at the exit of the linae if the S3's phase is used to compensate the energy difference between the four bunches. On boxom: same comb of precedent plot at the THz station; note that the length of each bunch has been modified by the dogleg (the first one is lengthened, the others are shortened) but their relative distance is almost the same.

RF compression without fourth harmonic correction

Figure 2.23: Longitudinal phase space and charge distribution of a 4 sub-pulses comb for different over-compression phases and correction of non-linearities by the fourth harmonic cavity discussed in the text. A: $S1 = -94^{\circ}$; B: $S1 = -98^{\circ}$; C: $S1 = -100^{\circ}$; D: $S1 = -103^{\circ}$.

RF compression with fourth harmonic correction

B. Marchetti

Considerations

- The ongoing SPARC_LAB activities are being studied in several other laboratories, including SLAC, DESY, CERN and KEK with equally or even more ambitious research programs.
- Therefore the time factor becomes very important to remain at the research frontier and to produce results with highimpact on the international scientific community.
- A redefinition of the priorities inside LNF and an increase in the number of dedicated researchers and technician is an indispensable requirement to keep SPARC_LAB productive.

2014 References

- V. Petrillo et al., Dual color x rays from Thomson or Compton sources, PRST-AB17, 020706 (2014)
- Subiel, A . et al., Dosimetry of very high energy electrons (VHEE) for radiotherapy applications: using radiochromic film measurements and Monte Carlo simulationsPhys. Med. Biol. 59, 5811 (2014)
- Ronsivalle, C, et al., Large-bandwidth two-color free-electron laser driven by a comb-like electron beamNew Journal of Physics 16, 33018 (2014)
- Rossi, Andrea R., The External-Injection experiment at the SPARC LAB NiM A 740, 60-66 (2014)
- Anania, M. P., et al., Design of a plasma discharge circuit for particle wakefield NIM A 740, 193-196 (2014)
- Pompili, R., et al., First single-shot and non-intercepting longitudinal bunch diagnostics for comb-like beam by means of Electro-Optic Sampling NIM A '740, 216-221 (2014)
- Massimo, F. et al., Transformer ratio studies for single bunch plasma wakefield acceleration NIM A 740, 242-245 (2014)

S Band GUN

-fabrication: OK -tested at UCLA up to 92 MV/m: OK -small modifications (supports and waveguides) to integrate the GUN into SPARC

(3 months of design and fabrication), 15 days for installation

-BD simulations necessary prior to the installation: solenoid position, new solenoid (ELI-NP style)?

C-Band Structures

-both structures tested at high power (35 MV/m reached)

- -conditioning of the SKIP-SLED has to be done
- -Modifications of C-band support (M. Del Franco): 2 months of design after receiving information on quadrupoles dismensions. Fabrication time depends on final design.

-15-20 days for installation and alignment