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Motivation

? The results of existing studies of correlation effects on the NME of
0νββ-decay show a striking model dependence

FEDOR ŠIMKOVIC et al. PHYSICAL REVIEW C 79, 055501 (2009)
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FIG. 3. r12 dependence of M0ν in 76Ge eval-
uated in the model space, which contains 12
subshells. The four curves show the effects of
different treatment of SRCs. The finite nucleon
size is taken into account.

SRC for the 0νββ decay of 76Ge. The quantity C(r12) is defined
by

M0ν =
∫ ∞

0
C(r12) dr12. (24)

We note that the range of r12 is practically restricted from
above by r12 ! 2R. From Fig. 3, we see that a modification
of the neutrino potential due to the different types of SRCs is
transmitted to the behavior of C(r12) for r12 ! 2 fm. Both the
CCM short-range correlation functions (see Fig. 2) and C(r12)
with SRC switched off (but with the FNS effect) have maxima
for r12 " 1 fm, unlike the phenomenological Jastrow function
with the maximum shifted to r12 = 1.5 fm. This explains a
significant increase of C(r12) with CCM SRC and suppression
of C(r12) with Jastrow SRC in this region. This phenomenon
clarifies also why the values of M0ν obtained with CCM SRC
are comparable to those calculated when only the FNS effect
is considered (see Table I). The increase of C(r12) for r12 "
1 fm compensates for its reduction in the range r12 ! 0.7 fm.

C. Finite nucleon size and two-body short-range correlations

The FNS effects are introduced in the calculation of the
0νββ-decay NMEs by the dipole form factors in momentum
space. The form factor simulates the fact that the nucleon is not

a point particle, and therefore as q2 increases, the probability
that the nucleon will stay intact (and not produce pions, etc.)
decreases. The physics of FNS and SRC is different, but both
reduce the magnitude of the operator when q2 increases or
equivalently r12 decreases. It was found [20] that the Miller-
Spencer and the UCOM short-range correlations essentially
eliminate the effect of the FNS on the matrix elements. The
same is expected to be valid also for the CCM CD-Bonn and
Argonne short-range correlations. From Fig. 2 we see that
the ratio of correlated and uncorrelated neutrino potentials is
changed only weakly if in addition to two-nucleon SRC the
effect of the FNS is taken into account.

It is worth mentioning that the behavior of the UCOM
correlated neutrino potential differs strongly from those cal-
culated with the CCM and Jastrow SRC. This is manifested in
Fig. 4. The studied ratio of UCOM correlated and uncorrelated
neutrino potentials never exceeds unity, unlike in the case of
CCM correlations (see Fig. 2). Actually, the UCOM SRCs
imitate the FNS effect with a form-factor cutoff of about
850 MeV. The two-nucleon wave function can be treated as two
point-like objects for nucleon separations greater than about
1.5 fm.

The effect of the SRC on the 0νββ-decay NMEs has
been reported mostly in the case when the FNS is taken into

TABLE I. Nuclear matrix elements for the 0νββ decays of 76Ge, 100Mo, and 136Te within the QRPA. The
results are presented for (i) Bare, no correlations and no nucleon form factors; (ii) FNS, no correlations but
with nucleon form factors; (iii) SRC, CCM Argonne and Miller-Spencer short-range correlations but without
nucleon form factors; and (iv) FNS+SRC, correlations and nucleon form factors.

Nucleus Bare FNS SRC FNS + SRC

CCM Miller-Spencer CCM Miller-Spencer

76Ge →76Se 7.39 6.14 5.86 4.46 5.91 4.54
100Mo →100Ru 6.15 4.75 4.40 2.87 4.46 2.96
130Te →130Xe 5.62 4.49 4.22 2.97 4.27 3.04
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TABLE II. Parameters for the short-range correlation
(SRC) parametrization of Eq. (11).

SRC a b c

Miller-Spencer 1.10 0.68 1.00
CD-Bonn 1.52 1.88 0.46
AV18 1.59 1.45 0.92

[36,48] highlighted the relevance of these observables for
obtaining an accurate description of the nuclear structure of
the nuclei involved in double-β decay. Figure 1 compares the
neutron and proton occupation probabilities in 48Ca and 48Ti
for two different effective interactions, GXPF1 and FPD6.
One can see very small differences between the results of
the two interactions. One can come to the same conclusion
when comparing similar occupation probabilities for all five
interactions reported in Table I.

In the present calculations we considered both SRC effects
and FS effects. Although the radial dependence of the neutrino
potential is very close to that of a Coulomb potential, many
previous calculations [25,26,33,34] took into account the SRC
missing in the two-body-product wave functions, via the
Jastrow-like parametrization described in Eqs. (10)–(12). Until
recently, the parameters a, b, and c used were those proposed
by Miller and Spencer [49], which have the effect of decreasing
the NME by about 30%. Recently, [36] the SRC effects were
revisited, using modern nucleon-nucleon interactions, such as
CD-Bonn and AV18, and it was found that the decrease in the
relative wave functions at short distances is compensated by a
relative increase at longer distances, and the overall NMEs do
not change very much compared with the NMEs without SRC
effects. Reference [36] proposed a parametrization of these
results in terms of similar Jastrow-like correlation functions
as in Eqs. (10) and (11); the corresponding parameters are
listed in Table II. In addition, Ref. [35] introduced an effective
0νββ operator that takes into account the SRC effects and
the contribution of the missing shells from the valence space

FIG. 2. (Color online) Dependence of the NME on the effective
interaction used and the short-range correlation (SRC) model. M-S,
Miller-Spencer.

TABLE III. Different contributions to the NME for the
GXPF1A interaction with 〈E〉 = 7.72 MeV.

SRC M0ν
GT M0ν

F M0ν
T M0ν

None 0.556 −0.219 −0.015 0.711
Miller-Spencer 0.465 −0.141 −0.014 0.570
CD-Bonn 0.688 −0.222 −0.014 0.845
AV18 0.634 −0.204 −0.014 0.779

using the general theory of effective interactions [45] and
found that the NME for the 0νββ decay of 82Se did not
change significantly compared with the result of the “bare”
operator.

Figure 2 shows our NMEs for all five effective interactions,
for all three SRC sets of parameters listed in Table II, and
for no SRC. One can see that the preceding semiquantitative
analysis is reflected in the dependence of the NME on the
choice of SRC. The results do not show significant dependence
on the effective interaction used, although one can see a
20% spread of NMEs for the same choice of SRC. All
NMEs reported here contain the higher-order terms described
in Eqs. (7)–(9). A comparison with the NMEs calculated
without the higher-order terms in the potential will be reported
elsewhere. To be consistent [50] with the calculation of the
phase factor G0ν

1 , we used R = 1.2A1/3 fm in Eq. (7). Our
choice for the h̄ω parameter entering the harmonic oscillator
wave functions was 45A−1/3 − 25A−2/3, which was shown to
provide a better shell model description of observables than
the simple 41A−1/3 ansatz. Table III lists the GT, F, and T
contributions to the overall NMEs for all SRC choices, when
the GXPF1A interaction was used. One can see that all these
contributions add coherently in Eq. (3) and that the tensor
contribution is negligible in all cases.

Figure 3 shows the dependence of the NMEs of the average
energy of the intermediate states. Varying 〈E〉 from 2.5 to
12.5 MeV, one gets less than 5% variation in the NME. This

M
0

FIG. 3. (Color online) Dependence of the NME on the average
energy of the intermediate states 〈E〉 for the GXPF1A interaction.
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Fig. 2. Radial dependence of the two-particle Gamow–Teller 0νββ matrix ele-
ment for p = p′ = n = n′ = 0f7/2 and J = 7 in the case of 48Ca decay. Shown
are the bare matrix element and Jastrow and UCOM correlated matrix elements.

Fig. 3. The same as Fig. 1 for the decay of 76Ge calculated by using the pn-
QRPA. Only the Bonn-A parametrization has been used for UCOM.

trow correlations cut out a significant part of the matrix element
at small r . This leads to a situation, where the total integrated
areas under the radial curve almost cancel out. In the case of
UCOM correlations the cancellation is not as severe due to the
fact that not so much amplitude is lost for small r .

Our results for the 0νββ decay of 76Ge are summarized in
Fig. 3 and Table 3. The results have been obtained by using the
framework of the proton–neutron quasiparticle random-phase
approximation (pnQRPA) [4,18]. The related calculations, in-
cluding the BCS and the pnQRPA calculations for 76Ge and
76Se, were done in the model space consisting of the single-
particle 1p–0f –2s–1d–0g–0h11/2 orbitals, both for protons
and neutrons. The single-particle energies were obtained from a
spherical Woods–Saxon potential. Slight adjustment was done
for some of the energies at the vicinity of the proton and neu-
tron Fermi surfaces to reproduce better the low-energy spectra
of the neighboring odd-A nuclei and the low-energy spectrum
of 76As. The Bonn-A G-matrix [19] was used as a two-body
interaction and it was renormalized in the standard way, as
discussed e.g. in Refs. [20–22]. Due to this phenomenologi-

Table 3
Gamow–Teller (M(0ν)

GT ), Fermi (M(0ν)
F ) and total matrix elements derived from

pnQRPA calculations for the 0νββ decay of 76Ge. The cases ‘bare’, ‘Jastrow’
and ‘UCOM’ are as in Table 1. Only the Bonn-A parametrization has been used
for UCOM

Bare Jastrow UCOM Bonn-A

M
(0ν)
GT −6.755 −4.681 −6.265

M
(0ν)
F 2.474 1.778 2.310

Total −8.328 −5.811 −7.734

cal renormalization we did not perform an additional UCOM
renormalization of the two-body interaction. In the present cal-
culations we have used the ‘default value’ gpp = 1.0 for the
particle–particle interaction parameter of the pnQRPA.

In Fig. 3 we display for 76Ge decay the multipole decompo-
sition of the total 0νββ matrix element M

(0ν)
GT − (gV/gA)2M

(0ν)
F

as derived from the pnQRPA calculations. The used symbols
are the same as in Fig. 1. The ratio gV/gA = −1.254 was
used in the calculations. Since the nuclear wave functions have
been calculated by the use of the Bonn potential, we have
used only the Bonn-A parametrization for the UCOM. Here
one can see a pattern similar to the case of 48Ca: the ef-
fect of the Jastrow correlations grows strongly with increas-
ing value of the angular momentum of the intermediate states.
As in the case of the 48Ca decay the effect is the largest for
the unnatural-parity states 1+,2−,3+,4−, . . . in an odd–odd
nucleus. Contrary to the Jastrow-corrected multipole contribu-
tions, the UCOM-corrected ones stay close to the bare contri-
butions for all intermediate multipoles J π .

We summarize our results on the 0νββ matrix elements of
the 76Ge decay in Table 3, where we give the bare, Jastrow-
corrected and UCOM-corrected Gamow–Teller, Fermi and to-
tal matrix elements. For the total matrix element the Jastrow
corrections amount to 30% reduction from the bare matrix el-
ement, whereas the UCOM corrections are some 7%. This,
again, suggests that in the earlier calculations [3,7] the effect
of the short-range correlations has been considerably overesti-
mated.

In this Letter we have addressed the important issue of
short-range correlations in the context of neutrinoless dou-
ble beta decay. We have calculated the related nuclear matrix
by the nuclear shell model for 48Ca and by the pnQRPA for
76Ge. The short-range correlations have been calculated by
the use of the simple Jastrow function and the more refined
UCOM method. Our computed results indicate that the Jastrow
method cuts off relevant parts of the many-body wave func-
tion for high values of angular momentum of the intermediate
states. This leads to the excessive reduction of 30%–40% in
the magnitudes of the nuclear matrix elements. At the same
time the UCOM reduces the magnitudes of the matrix elements
only by 7%–16%, roughly equally for all multipoles. Our re-
sults put to question the recent calculations where short-range
and tensor correlations cause large effects on the nuclear ma-
trix elements of neutrinoless double beta decay [7]. Study of
the effects of the UCOM procedure upon heavier nuclei is in
progress.

. F. Šimkovic et al, PRC
79, 055501 (2009)

. M. Horoi and S, Stoica,
PRC 81, 024321 (2010)

. M. Kortelainen et al, PLB
647, 128 (2007)
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Half-life of 0νββ-decay

? The half-life associated with 0νββ-decay of a nucleus of mass A and
charge Z

(A,Z)→ (A,Z − 2) + 2e− ,

blue τ , can be written in the form

1
τ

= G|M|2
(
〈mββ〉

me

)2

,

where G is a phase-space factor, me is the electron mass and the so called
effective neutrino mass is defined in terms of neutrino mass eigenvalues
and elements of the mixing matrix according to

〈mββ〉 =

∣∣∣∣∣∣∣∑k

U2
ekmk

∣∣∣∣∣∣∣
2

.
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Structure of NME

? The NME can be cast in the form

M = MGT −

(
gV

gA

)2

MF ,

where gV and gA are the vector and axial-vector coupling constant,
respectively, while MF and MGT denote the Fermi (F) and Gamow-Teller
(GT) transition matrix elements.

? Within the closure approximation MF and MGT can be written in the
general form

Mα = 〈Ψf ,J
π
f |

∑
jk

τ+
j τ

+
k Oα

jk(r) |Ψi,J
π
i 〉 ,

where α = F, GT , τ+
i is the charge-raising operator acting in the isospin

space of the i-th nucleon and Ψi and Ψf are the intial and final nuclear
states, the total angular momentum and parity of which are labeled Jπ

i
and Jπ

f .
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? Fermi (F) and Gamow-Teller (GT) transition operators

OF
jk(r) = 11 H(rjk) , OGT

jk (r) = (σj · σk) H(rjk) ,

where H(rjk) is the so-called neutrino potential, given by

H(rjk) = RA
2
π

∫ +∞

0

j0(qrjk)
q + 〈E〉

qdq ,

with j0(x) = sin x/x, rjk = |rj − rk|, RA is the nuclear radius and 〈E〉 is the
average energy of the virtual intermediate states employed in the closure
approximation.

? Simplifying assumption: the decay process only involves two neutrons of
the initial state nucleus, while all other nucleons act as spectators

Omar Benhar (INFN, Roma) INFN, LNGS December 4th, 2014 6 / 20



? Factorisation of the two-nucleon matrix elements

Mα =
∑

j1,j2,j′1,j
′
2,J

π

TBTD (j1, j2, j′1, j
′
2; Jπ)〈j′1j′2; Jπ T | τ+

1 τ
+
2 Oα

12(r) |j1j2; Jπ T〉a .

. The coefficients TBTD (j1, j2, j′1, j
′
2; Jπ) describe how the spectator nucleons

rearrange themselves as a result of the decay process. They are computed
in a model space using an effective nucleon-nucleon interaction.

. the two-body matrix element is decomposed into products of reduced
matrix elements of operators acting in spin and coordinate space

. The coordinate-space two-nucleon state is rewritten in terms of relative
and center of mass coordinates using the Talmi-Moshinski transformation
of the harmonic oscillator basis r12 = r1 − r2 and R12 = (r1 + r2)/2

〈r1|k1l1〉〈r2|k2l2〉 =
∑

k,l,K,L

〈kl, KL|k1l1, k2l2〉Λ〈R12|KL〉〈r12|kl〉 ,
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Limits of the shell-model picture

? The spectral lines corresponding to the shell model states clearly seen in
the missing energy spectra of measured by

e + A→ e′ + p + X

Emiss
12.1

18.3

40.0
(MeV)

1p1/2

3/21p

1s1/2

O16
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? The spectroscopic factors (i.e. the residues of the Green’s function at the
quasiparticle poles, obtained integrating the spectra in the region of the
correponding peak) turn out to be significantly below the shell model
prediction, independently of A
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? Correlation effects are known to be large, and significantly affect any
processes driven by two-nucelon operators
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Correlated basis functions

? Correlated states are obtained from the shell-model states through the
transformation

|Ψn〉 =
F|Φn〉

〈Φn|F†F|Φn〉
1/2 ,

with the correlation operator F is defined as (note that [fij, fik] , 0)

F = S
∏

ij

fij .

? The operator structure of the two-body correlation functions fij reflects
the complexity of the nucleon-nucleon potential (spin-isospin
dependence, rotational symmetry breaking . . . )

fij =

6∑
m=1

f (m)(rij)O
(m)
ij , O(m)

ij = [1, (σi · σj), Sij] ⊗ [1, (τi · τj)]

Sij = 3(σi · rij)(σj · rij)/r2
ij − (σi · σj) .
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Correlation function

? The correlation function has been written in the form

f12 = f (r12) + g(r12)(σ1 · σ2)

f (r12) = f (1)(r12) + f (2)(r12) , g(r12) = f (3)(r12) + f (4)(r12)

? The radial dependence of f (r) and g(r) is determined through functional
minimization of the expectation value of a realistic nuclear hamiltonian
in the correlated ground state of isospin-symmetric nuclear matter

δ

δ{f (m)}
〈0|H|0〉 = 0

with the boundary conditions

lim
r→∞

f (1)(r) = 1 , lim
r→∞

f (m>1)(r) = 0
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Why nuclear matter?

? In isospin-symmetric nuclear matter, the simplifications arising from
translation invariance allow to carry out very accurate calculations

? Short range dynamics, determining the correlation function, is expected
to be little affected by surface and shell effects

? The momentum distribution

n(k) = 〈0|a†kak|0〉

at k ∼> 1.5 fm−1 is nearly
independent of A for A> 2
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? Two-nucleon distribution functions

gnn(r) =
1

4πr2 〈
∑
j>i

δ(r − rij)
1
2

(1 − τ3
i )

1
2

(1 − τ3
j )〉 ,

gpn(r) =
1

4πr2 〈
∑
j>i

δ(r − rij)
1
2

(1 + τ3
i )

1
2

(1 − τ3
j )〉 ,

? The two-body cluster approximation turns out to be remarkably accurate
Omar Benhar (INFN, Roma) INFN, LNGS December 4th, 2014 13 / 20



Correlations in the two-body 0νββ-decay matrix element

? Correlations are included modifying the two-nucleon states according to

|kl〉 → f12|kl〉

? The above prescription amounts to replacing the F and GT transition
operators with effective operators defined as

Õα
12 = f12Oα

12f12 .

? Because for a neutron-neutron pair (τ1 · τ2) = 1, neglecting non-central
correlations

f12 = f (r12) + g(r12)(σ1 · σ2)

and

ÕF
12 = [f 2(r12) + 3g2(r12)]OF

12 + 2g(r12)[f (r12) − g(r12)]OGT
12 ,

ÕGT
12 = [f 2(r12)−4f (r12)g(r12)+7g2(r12)]OGT

12 +6g(r12)[f (r12)−g(r12)]OF
12 .
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Numerical calculation

? We have considered the reaction

48
20Ca→ 48

22Ti + 2e−

in which both the initial and the final nucleus are in their ground states,
having Jπ = 0+.

? The neutrons and protons involved in the decay process occupy the 1f7/2
shell

? Numerical calculations have been carried out using the TBTD computed
by B.A. Brown and harmonic oscillator wave functions corresponding to
~ω = 45A−1/3 − 25A−2/3 MeV

? The vector and axial-vector coupling constant and the average energy
have been set to the values gV = 1, gA = 1.25 and 〈E〉 = 7.72 MeV
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? Numerical results: ∼ 20% suppression

4

the Argonne v′
6 NN potential, solving the set of Euler-

Lagrange equations derived from the minimization of the
ground state energy of isospin-symmetric nuclear matter
at equilibrium density [14].

In Fig. 1 the correlation functions f(r12) and g(r12)
(the latter multiplied by a factor 5) of Eq. (17) are com-
pared to those employed in the study of the 48Ca → 48Ti
0νββ decay described in Ref. [6]. The solid, dot-dash
and dashed line correspond to the correlation functions
referred to as Miller-Spencer, AV 18 and CD Bonn, re-
spectively [6].

Figure 1: (colour online) Radial behaviour of the correlation
functions of Eq. (17). The Miller-Spencer (solid line), AV 18
(dot-dash line) and CD Bonn (dashed line) correlation func-
tions employed in Ref. [6] are also shown, for comparison.

f(r12) f(r12) + g(r12)(σ1 · σ2)

M/MSM 0.77 0.79

Table I: Ratio between the 0νββ NME of Eq. (4), computed
including central and central plus spin-dependent correlations
and the corresponding quantity obtained setting f(r12) = 1
and g(r12) = 0.

The numerical values of the ratio M/MSM , where
MSM is the NME computed without including corre-
lations – which amounts to setting f(rij) = 1 and
g(rij) = 0 – are listed in Table I. It appears that in-
clusion of central correlations leads to a >∼ 20% decrease
of the NME, while the effect of spin-dependent correla-
tions is small, and goes in the opposite direction.

Our results turn out to be close to that obtained by
the authors of Ref. [6] using the Miller-Spencer correla-
tion function. However, the same paper also reports a ∼
10% and ∼ 20% enhancement of the ratio M/MSM , re-
sulting from calculations carried out with the CD-Bonn
and AV 18 correlation functions, respectively. Compari-
son between the shapes of the correlation functions, dis-

played in Fig. 1 suggests that the qualitative differences
in the calculated M/MSM ratios reflect the differences in
shape of the correlation functions. The enhancement of
the NME, yielding M/MSM > 1, appears to be associ-
ated with the use of correlation functions that sizeably
overshoot unity at intermediate distance, while exhibit-
ing a less pronounced correlation hole at short distance.

Valuable insight on the behaviour of nucleon-nucleon
correlations can be obtained from theoretical studies of
infinite nuclear matter. The simplifications arising from
translation invariance allow one to carry out accurate
calculations of the two-nucleon distribution functions –
yielding the probability distribution of finding two nu-
cleons at separation distance r – in both the neutron-
neutron (nn) [or, equivalently, proton-proton (pp)] and
proton-neutron (pn) channels. They are defined as

gnn(r) =
1

4πr2
〈
∑

j>i

δ(r − rij)
1

2
(1 − τ3

i )
1

2
(1 − τ3

j )〉 ,

(23)

gpn(r) =
1

4πr2
〈
∑

j>i

δ(r − rij)
1

2
(1 + τ3

i )
1

2
(1 − τ3

j )〉 ,

(24)

where τ3
i is the matrix describing the third component of

the isospin of particle i, while 〈. . .〉 denotes the ground
state expectation value.

Figure 2 shows the radial dependence of the distribu-
tion functions gnn(r) (solid line) and gpn(r) (dashed line)
computed using the Fermi Hyper-Netted Chain (FHNC)
summation scheme and the Argonne v′

6 NN potential [14].
The dot-dash line corresponds to the results obtained at
lowest order of the cluster expansion with the correlation
function of Eqs. (17)-(19). It clearly appears that: i) the
distribution function in the nn channel does not over-
shoot unity, and ii) the two-body cluster approximation
provides a remarkably good description of the full result.

A different procedure to include correlation effects in
the NME of the 0νββ decay, based on concept of quasi-
particle in interacting many-body systems, exploits the
renormalisation of the shell model states. Within this
scheme the single nucleon state of quantum numbers klj
is modified according to [compare to Eq. (15)]

|klj〉 →
√

Zklj |klj〉 . (25)

The spectroscopic factor Zklj is the residue of the Green’s
function at the single particle pole, not to be confused
with the occupation probablity [15]. It is defined as [16]

Zα
klj =

∫
d3x|φα

klj(x)|2 , (26)

where the superscript α = p, n specifies the third com-
ponent of the isospin, while the quasi hole wave function
φα

klj is given by

φα
klj(x1) =

√
A

Nα
klj

〈Ψα
klj(x2, . . . , xA)|Ψ0(x1, . . . , xA)〉 .

(27)

? Comparison between different correlation functions, yielding different
results
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Alternative approach

? Correlation effects can also be included through a renormalization of the
shell model states

|kiliji〉 →
√

Zkiliji |kiliji〉

? The spectroscopic factor Zkiliji is the residue of the nucleon Green’s
function at the single particle pole.

? It can be computed from the definition (α = p, n)

Zαkiliji =

∫
d3x|φαkiliji(x)|2

φαkiliji(x1) =

√
A

Nα
kiliji

〈Ψα
kiliji(x2, . . . , xA)|Ψ0(x1, . . . , xA)〉 .

Nα
kiliji = 〈Ψα

kiliji |Ψ
α
kiliji〉

1/2
〈Ψ0|Ψ0〉

1/2

Omar Benhar (INFN, Roma) INFN, LNGS December 4th, 2014 17 / 20



Including the spectroscopic factors in the NME

? In the case of 48Ca→ 48Ti 0νββ-decay we replace

Mα → M̃α = Zp
1f7/2

(48Ti)Zn
1f7/2(48Ca) Mα

? Under the further assumption (the validity of which is strongly supported
by nuclear matter calculations)

Zp
1f7/2

(48Ti) ≈ Zn
1f7/2(48Ca)

one finds
M̃α = [Zn

1f7/2(48Ca)]2Mα

? The spectroscopic factor of the f7/2 state of 48Ca calculated using nuclear
wave functions, including correlations as well as surface and shell
effects, can be used to obtain the NME

Zn
1f7/2(48Ca) = 0.91⇒ M/MSM = 0.83

Omar Benhar (INFN, Roma) INFN, LNGS December 4th, 2014 18 / 20



Connecting correlation function and spectroscopic factor

? Note that using renormalised single particle states is conceptually
equivalent to using correlated states.

? In the absence of correlations, Zkilijj = 1 for all occupied shell model
states, and Zkiliji = 0 otherwise.

? Formally, the connection can be shown at leading order in the cluster
expansion of the overlap

φn(x1) = 〈Ψn(x2, . . . , xA)|Ψ0(x1, . . . , xA)〉

with the correlated wave functions defined as

Ψ0(x1, . . . , xA) =

A∏
j>i=1

fij |ΦSM
0 (x1, . . . , xA)〉

Ψ0(x1, . . . , xA) =

A∏
k>j=2

fjk |ΦSM
n (x2, . . . , xA)〉
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Summary & Outlook

? Bottom line: whatever the theoretical approach taken, the consistent
inclusion of short range correlations in the shell model picture is a long
standing and still very elusive issue.

? The results of our calculations indicate that inclusion of correlations
leads to a ∼20% decrease of the NME

? Comparison between our results and those available in the literature
show that the shape of the correlation function plays a critical role.

? The ∼ 20% suppression is supported by the results of an alternative
calculation based on the use of sprctroscopic factors

? While our results appear to be encouraging, further studies are needed:
. analysis of higher order contributions to the cluster expansion of the

spectroscopic factor
. use of a correlation function obtained from the minimisation of the ground

state energy of 48Ca
. inclusion of the full operator structure of the correlation function
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