DISTRIBUTED "CLOUD" STORAGE SERVICES

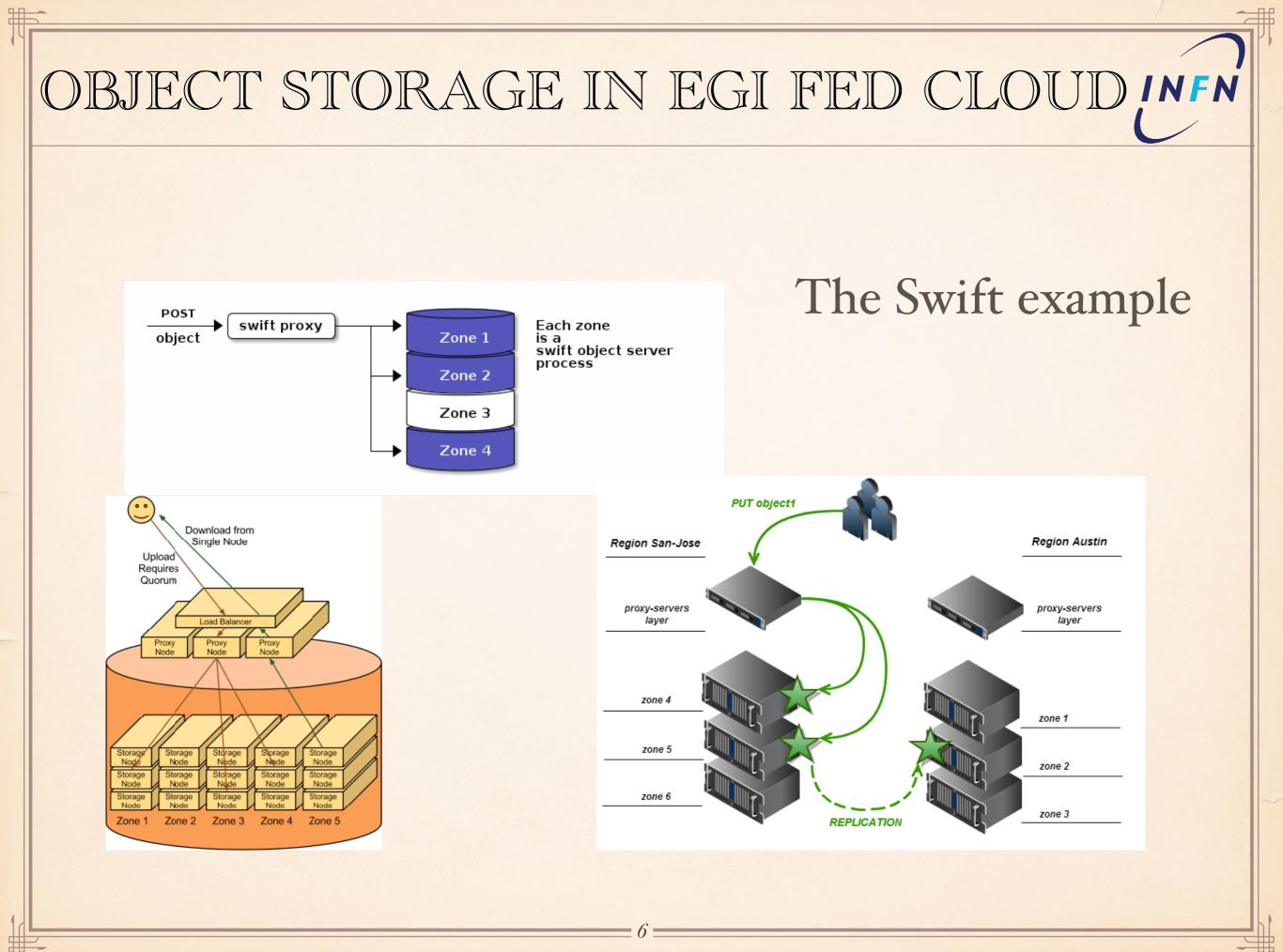
GIACINTO DONVITO INFN-Bari

OUTLINE

- Storage services in EGI Fed Cloud
 - Technological solutions
 - How it works
- ♦ AAI
- First experience on using EGI Cloud Services
- Other "cloud-like" Storage development
- Open Issues

STORAGE SERVICES IN EGI FED CLOUD

- Two types of approach:
 - Object Storage
 - Remotely exploitable
 - PUT/GET calls via HTTP/HTTPS
 - Block Storage:
 - Standard Disk Device
 - The users can format the device depending on his/her needs
 - Fully posix compliant
 - Usable locally only at a given cloud site


There is also ephemeral space on the virtual machine itself

OBJECT STORAGE IN EGI FED CLOUD

- The Object storage services are accessible via X509/VOMS
- Usually implemented with CDMI or Swift native APIs
- This kind of services could be easily exploited by libraries (programmatic APIs)
 - ♦ "curl"
- Mostly OpenStack Swift based
- Swift is also able to implement "sort-of" encryption
- It is possible to both stream the file or just read few chunks
- Also partial upload is possible

OBJECT STORAGE IN EGI FED CLOUD

- The object could be "enriched" with the use of metadata
- Data are organized per containers and objects
- This storage space is often configured with a software replica
 2-3 copies on single disk without raid
- It is possible to share data with other users:
 - ACLs could be arranged per objects or containers
 - or made the data publicly available
- Only the real used space is accounted
- Provide a virtually un-limited amount of storage

OBJECT STORAGE IN EGI FED CLOUD

- * [root@pccms64 -]# ldapsearch -x -H ldap://egee-bdii.cnaf.infn.it:2170 -b o=glue | grep -i cdmi | grep GLUE2EndpointID | grep -v "dn:"
- GLUE2EndpointID: https://server2-epsh.unizar.es/swift/v1_CDMI_1.0.1_X509-VOMS
- GLUE2EndpointID: https://server3-eupt.unizar.es/swift/v1_CDMI_1.0.1_X509-VOMS
- GLUE2EndpointID: http://cdmi.cloud.gwdg.de:4001:_CDMI_1.0.1_X509-VOMS
- GLUE2EndpointID: https://storage-serviceo1.example.org:8080_CDMI_1.0.1_X509-VO
- GLUE2EndpointID: https://storage1.ui.savba.sk:8080_CDMI_1.0.1_X509-VOMS
- GLUE2EndpointID: https://storage2.ui.savba.sk:8080_CDMI_1.0.1_X509-VOMS
- GLUE2EndpointID: https://swift.zam.kfa-juelich.de:8888/cdmi/_CDMI_1.0.1_X509-V
- GLUE2EndpointID: https://prisma-swift.ba.infn.it:8080_CDMI_1.0.1_X509-VOMS
- GLUE2EndpointID: https://okeanos-cdmi.hellasgrid.gr/pithos/_CDMI_1.0.2_X509-VO

OBJECT STORAGE IN EGI FED CLOUDINFN

First of all you have to create a Token:

* curl -k --cert /tmp/x509up_u50865 -d '{"auth":{"voms": true, "tenantName": "EGI_FCTF"}}' -H "Contenttype: application/json" <u>https://egi-cloud.zam.kfa-juelich.de:5000/v2.0/tokens</u>

* export TOKEN="MIIRZAY.....CRv-UVQ=="

List all the available container:

* curl --insecure -X GET -H 'X-Auth-Token:'\$TOKEN https://swift.zam.kfa-juelich.de:8888/cdmi/ AUTH_df37f5b1ebc94604964c2854b9c0551f/

Create a new container:

* curl --insecure -X PUT -H 'X-Auth-Token:'\$TOKEN https://swift.zam.kfa-juelich.de:8888/cdmi/ AUTH_df37f5b1ebc94604964c2854b9c0551f/giacinto_test/

Upload a file to an existing container:

* curl -k -X PUT -H 'X-Auth-Token:'\$TOKEN -H 'Content-Type: application/cdmi-object' -H 'Accept: application/cdmi-object' https://swift.zam.kfa-juelich.de:8888/cdmi/ AUTH_df37f5b1ebc94604964c2854b9c0551f/giacinto_test/test.txt -T ./testfile.txt

And read it back:

* curl --insecure -X GET -H 'X-Auth-Token:'\$TOKEN https://swift.zam.kfa-juelich.de:8888/cdmi/ AUTH_df37f5b1ebc94604964c2854b9c0551f/giacinto_test/test.txt -o test.test.txt

* curl -k https://swift.zam.kfa-juelich.de:8888/cdmi/AUTH_df37f5b1ebc94604964c2854b9c0551f/giacinto_test/ test.txt

OBJECT STORAGE IN EVERYDAY LIFE INFN Ricevi una chiave donazione! 000 쮸 Ŧ Nuova Connessione Collegamento Veloce Aggiorna Modifica Scollega Azione m FTP-SSL (Explicit AUTH TLS) Pref SFTP (SSH Trasferimento File Sicuro) WebDAV (Web-based Distributed Authoring and Versioning) i WebDAV (HTTP/SSL) MobileMe iDisk (WebDAV) S3 (Amazon Simple Storage Service) 🔧 Google Storage Eucalyptus Walrus S3 Rackspace Cloud Files Swift (OpenStack Object Storage) i Google Docs Windows Azure Cloud Storage docs.google.com - Google Docs docs.google.com https://giacintodonvito@docs.google.com/ Access all your documents, spreadsheets & presentations Rackspace Cloud Files storage.clouddrive.com 1 -۰.

P

5 Preferiti

BLOCK STORAGE IN EGI FED CLOUD

- The block storage provide a Virtual Machine with additional disk space
 - As attaching an USB drive o a remote virtual machine
- It is possible to use standard posix I/O
- It is possible to exploit this space for any kind of data (RDMS, NoSQL, etc)
- This is strictly linked to a given site, could not be moved out of it
- It is possible to manage it via OCCI interface as for the virtual machine
 - The same X509/VOMS authorization mechanism
- This storage space survive to the Virtual Machine

BLOCK STORAGE IN EGI FED CLOUD

- The disk space is accounted for the entire block storage device, regardless how much of it is currently in use within the VM
- Depending on the storage implementation at a given site:
 - There is a limit on the number of block storage devices you can attach on a VM
 - There is a limit to the maximum size of such virtual disks
 - susually no more than 2-5TB
- Each block storage could be attached to only one VM at the time
- Several different implementation techniques available, both proprietaries or OpenSource. Practically transparent for the users.
 - Open: CEPH, GlusterFS, simple iSCSI on LVM
 - Proprietary: Netapp, DELL, IBM, etc

BLOCK STORAGE IN EGI FED CLOUD

First of all you need to create the device:

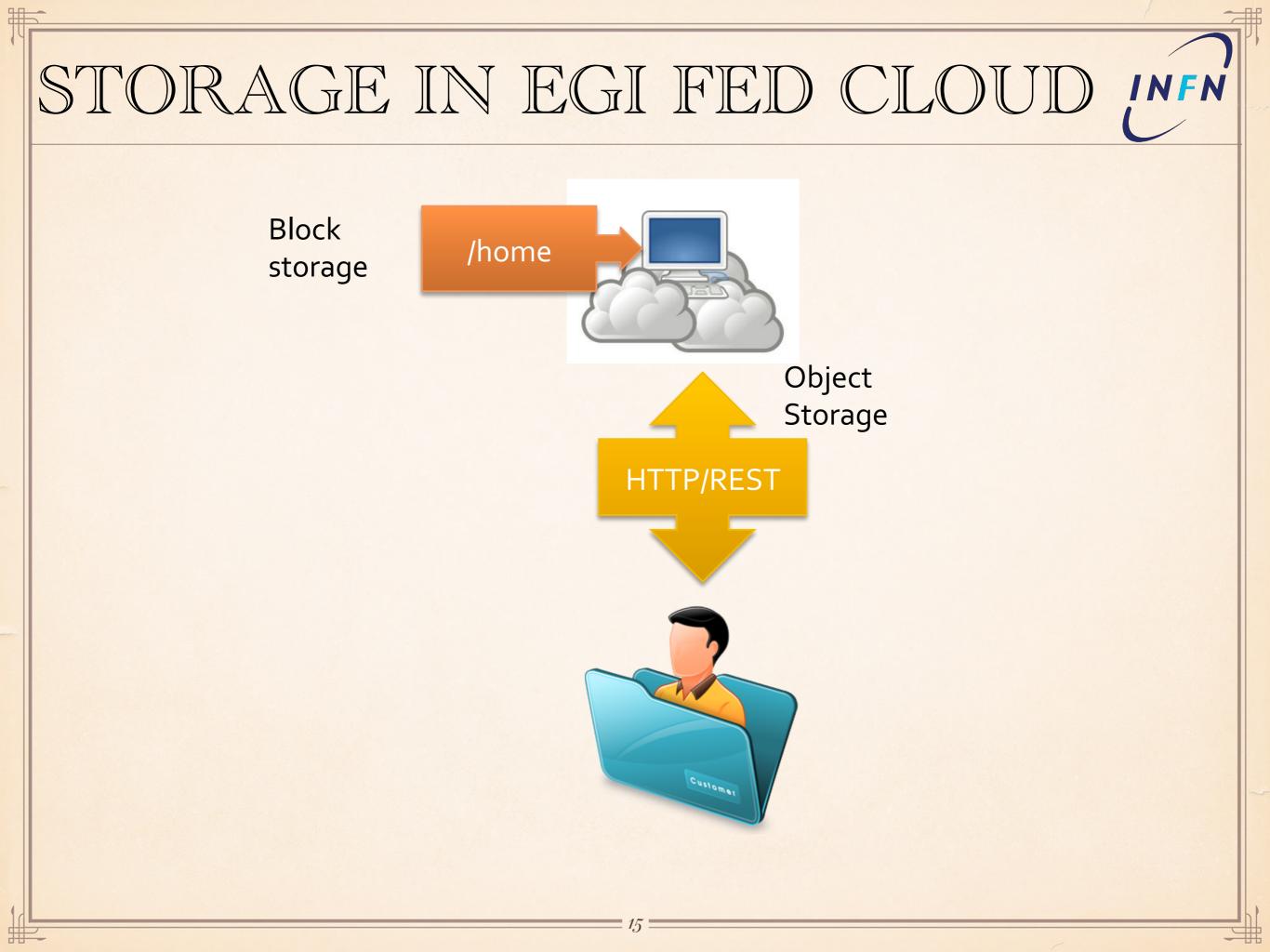
* occi -e <site_occi_endpoint> --auth x509 --user-cred <proxy_certificate> --voms -action create --resource storage -t occi.storage.size='num(<storage_size_in_gb>)', occi.core.title= <storage_resource_name> http://site.occi.endpoint/storage/ <storage_resource_id>

Then you can attach to a VM

* occi -e <site_occi_endpoint> --auth x509 --user-cred <proxy_certificate> --voms -action link --resource /compute/<vm_id> --link /storage/<storage_resource_id>

Or create a new VM with the disk attached

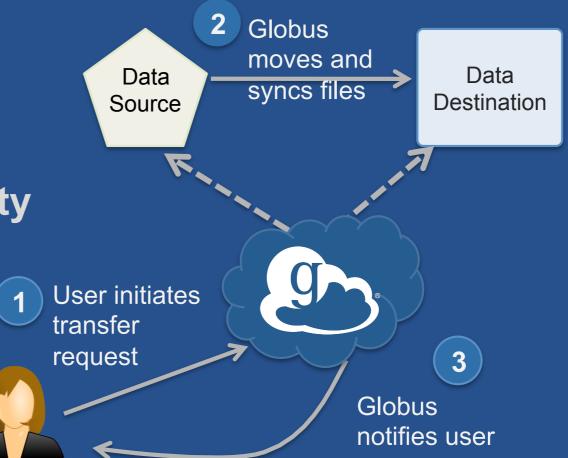
* occi -e <site_occi_endpoint> --auth x509 --user-cred <proxy_certificate> --voms -action create --resource compute [...] --link /storage/<storage_resource_id>

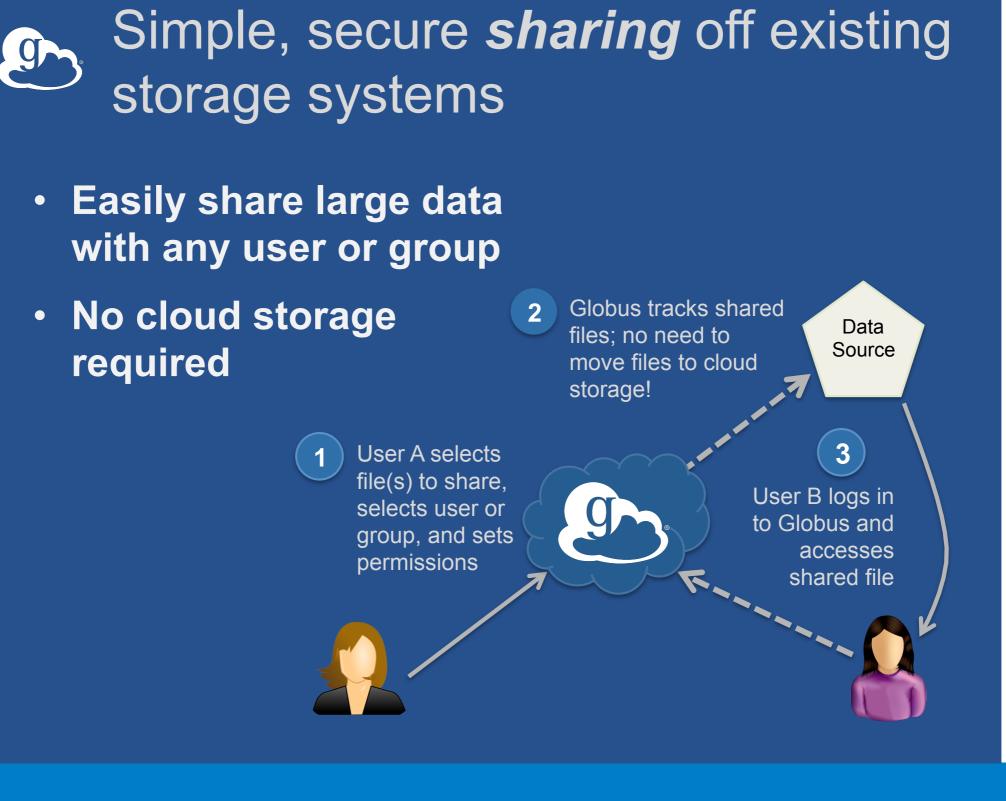

- The disk could be detached to a VM and attached to another one
- Or could be deleted

FIRST EXPERIENCE ON USING EGI CLOUD SERVICES

- Object Storage:
 - Not many site already providing it
 - Quite good performance with limited client-side effort
 20-30MB/s WAN (single stream, simple client, insecure)
 - noticeable overhead for small files:
 - about 2.3 secs per file over WAN
 - It is possible to exploit it with widely known client (curl, wget) and without VOMS certificate
 - Using temporary tokens

FIRST EXPERIENCE ON USING EGI CLOUD SERVICES


- Block Storage:
 - Most of the sites support this storage type
 - The performance largely depend on the site implementation but could be as good as a local disk
 - it is not difficult to run at 100MB/s for sequential I/
 O on a single block device
 - Quite straightforward to support legacy application with permanent storage
 - Very well suited for databases, application server, etc


How It Works

Reliable, secure, high-performance *file transfer* and *replication*

- "Fire-and-forget" transfers
- Automatic fault recovery
- Seamless security
 integration
- Powerful GUI and APIs

Sharing

What is WebFTS?

- Web based tool to transfer files between grid/cloud storages
- Modular protocol support
 - gsiftp, http(s), xrootd and srm
 - Cloud extensions: dropbox, CERNBox
- Development funded by

WebFTS: File Transfer Web Interface for FTS3

17/11/2014

Success Stories

- WebFTS has been successfully tested to transfer from/to:
 - EUDAT B2Stage (iRODS DSI)
 - Any gsiftp/webdav/xrootd aware grid storage (DPM, dCache, Castor, EOS, Storm)
 - HPC Titan @ Oak Ridge National Lab (ongoing)
 - <u>https://www.olcf.ornl.gov/titan/</u>
- Under evaluation by LHCb

IT-SDC

WebFTS: File Transfer Web Interface for FTS3

Transfer interface

ft Home	🚍 My jobs	Submit a transfer			
Grid SE Grid Storage Element	▲ → → → → → → → → → → → → → → → → → → →	Grid SE Grid Storage Element			
Grid SE Grid Storage Element	Overwrite Files	gsiftp://lxfsra10a01.cern.ch/dpm/cern.ch/home/			
Dropbox Dropbox	Compare Checksums	Select All	None C Refresh	Show filters	Size
0 File(s) Selected	LFC Registration	0			0.20
	Ifc://	alice	drwxrwxr-x	01 Aug 13	-
		atlas	drwxrwxr-x	06 Jun 07:58	-
			drwxrwxr-x	04 Sep 13:31	-
		team	drwxrwxr-x drwxrwxr-x	09 Sep 15:52 01 Jul 13	-

WebFTS: File Transfer Web Interface for FTS3

IT-SDC

12

Dropbox plugin

- Server side the development of a plugin for the metadata management and I/O operations was needed:
 - FTS REST integrates the plugin to perform metadata management operations
 - FTS3 server uses the plugin to perform the transfers:
 - GridFTP <-> dropbox
 - Http(s) <-> dropbox

IT-SDC

WebFTS: File Transfer Web Interface for FTS3

17/11/2014

Links

- Online service accessible:
 - <u>https://webfts.cern.ch</u> ← try now!
 - User certificate in your browser
- User guide, F.A.Q:

IT-SDC

- Online guided-tour
- http://fts3-service.web.cern.ch/documentation/ webfts
- Official support & code
 - fts-support@cern.ch
 - https://github.com/cern-it-sdc-id/webfts

STILL OPEN ISSUES

INFN

- Object Storage:
 - You have to look for resources
 - into the global BDII
 - No federation among different instance on different sites
 - No simple (neither) automatic way of moving files from one storage to another
- Block Storage:
 - Not possible at the moment to move a block from one cloud instance to another
 - No "automation" features available at the moment, via OCCI, for building a complex template comprising VM and Disk
- There are others tools that on the long-term could be useful in the cloud environment, but development are still needed