GPFS-OpenStack Integration

Vladimir Sapunenko, INFN-CNAF
Tutorial Days di CCR,
18 dicembre 2014

Outline

* GPFS features as they relate to cloud scenarios

* GPFS integration with OpenStack components
— Glance
— Cinder
— Swift

* Demo

GPFS

IBM General Parallel File System (GPFS) is a cluster file
system that provides concurrent access to file systems
from multiple nodes.

The storage provided by these nodes can be direct
attached, network attached, SAN attached, or a
combination of these methods.

GPFS provides many features beyond common data
access, including data replication, policy based storage
management, and space efficient file snapshot and
clone operations.

Licensed and widely used in INFN
— Current support contract till October 2017

GPFS history and evolution

GPFS
General File

Serving

= Standards

= Portable
operating
system
interface
(POSIX)
semantics
-Large block

= Directory and
Small file perf

= Data
management

Virtual

Tape Server
VTS)

Linux®
Clusters
(Multiple
architectures)

IBM AIX®
Loose Clusters

1998

2002

GPFS 2.1-23
HPC

Research
Visualization
Digital Media
Seismic
Weather
exploration
Life sciences

32 bit /64 bit
Inter-op (IBM AIX
& Linux)

GPFS Multicluster

GPFS over wide
area networks
(WAN)

Large scale
clusters
thousands of
nodes

2005

GPFS 3.1-3.2

Information
lifecycle
management (ILM)

= Storage Pools
= File sets
= Policy Engine

Ease of
administration

Multiple-
networks/ RDMA

Distributed Token
Management

Windows 2008

Multiple NSD
servers

NFS v4 Support

Small file
performance

GPFS 3.3

Restricted
Admin
Functions

Improved
installation

New license
model

Improved
snapshot and
backup

Improved ILM
policy engine

GPFS 34

Enhanced
Windows cluster
support

- Homogenous
Windows Server

Performance and
scaling
improvements

Enhanced
migration and
diagnostics
support

GPFS 3.5

Active File
Management

GPFS Native
RAID

GPFS Shared
Nothing Cluster

2006

2009

2010

2012

GPFS 4.1
Encryption

New NSD
format

Integration with
OpenStack

Blocksize up to
16MB

Local Read-
only cache

Native GPFS
protocol for
AFM

18/12/2014

GPFS and OpenStack Integration

You are here

2014

Conceptual understanding

What GPFS does:

* allows a group of computers concurrent access to a common
set of data

* allows shared access to file systems from Remote GPFS
Clusters providing a Global namespace

e Supports Shared-disk and from v.3.5 Shared-Nothing mode

* is not just a Clustered File System software —it’s a full
featured set of File management tools

18/12/2014 GPFS and OpenStack Integration

New major release: GPFS 4.1

 Code name “Elastic Storage”

— the Next Generation of Software Defined Storage for cloud, big data
and analytics

* Elastic Storage features:
— Enhanced security
* native encryption and secure erase, NIST SP 800-131A encryption compliance
— Increased performance
» Server-side Flash caches increase |0 performance up to 6X

— Improved usability

» data migration; AFM, FPO, and backup/restore enhancements; reliability,
availability and serviceability enhancements

— integrated with IBM Tivoli Storage Manager (TSM) or IBM Linear Tape
File System (LTFS),

* Can manage the full data life cycle, delivering geometrically lower cost savings
through policy driven automation and tiered storage management.

18/12/2014 GPFS and OpenStack Integration

Elastic storage overview

r'\hr\n

Map Reduce
Connector
Smﬁ Obpct
s Wl rosc) S

Elastic Storage

@

Tape

.

Users and
applications

OpenStack
Cinder + Glance
Virtualization

Share Nothing
Cluster /
7

GPFS features useful for clouds

Storage pools
Independent Filesets
File cloning

Shared Nothing Cluster - File Placement
Optimizer (FPO)

— Metablocks (blockGroupFactor)

— Extended failure groups

— Local read-only cache (LROC)

GPFS = Software Defined Storage !

|
KK
il
1”“

'lll
Il
I

GPFS = Software Defined Storage (SDS)

Technical Computing Big Data & Analytics

@ openstack

GPFS NFS GPFS Cinder Swift
File Hadoop Block Object
Connector

POSIX

Linear capacity &
performance scale out

Enterprise storage on
standard hardware

GPFS Storage Server Cluster

Single software defined storage solution across all these application types

© 2014 18M Corporation 9

18/12/2014 GPFS and OpenStack Integration

Some details about

Storage Pools (SP)
ndependent FileSets
ntelligent Life Circle Management (ILM)

~ile clones
Extended Failure Groups
File Placement Optimizer (FPO)

Filesets and Storage pools

m Storage pools (SP) allow the creation of disk groups within
a file system (hardware partitioning)

* Filesets is a sub-tree of the file [stwraepoolsystem
system namespace
(Namespace partitioning).

— Behave like separate file
systems

— can be used as administrative
boundaries to set quotas

— Independent Filesets
Using separate i-node space

* Use Policy to connect SP and
Filesets

— Default policy writes everything | spa
to system SP m
*
Namespace .

18/12/2014 GPFS and OpenStack Integration

Fileset data2 /

ILM: Intelligent Lifecycle Management

18/12/2014

Type placement policy:
Client (S) -files with .bin extention

)

Default placement policy

Time migration policy
-file older than 30 days

Time migration policy

Disks inside storage pool -file older than 30 days

Size migration policy:
-files bigger than 1GB

Tape drives

Disks inside storage pool

GPFS and OpenStack Integration

12

File clones

* Afile clone is a writable snapshot of an individual
file.
* Cloning a file is similar to creating a copy of a file

— but the creation process is faster and more space-
efficient because no additional disk space is consumed
until the clone or the original file is modified.

* Multiple clones of the same file can be created
with no additional space overhead.

Extended Failure groups

vt

become unavailable simultaneously, e.g.,
— Disks attached to the same storage controlle
— Disks served by the same NSD server

Used for two purposes:

— Replication: replicas of the same block must
be on disks in two different failure groups

— Striping: stripe across failure groups, then
across disks within failure group: D1, D3, D5,
D7, D2, D4, D6, D8
GPFS-FPO: “extended failure group”
— (conveys additional location information)
— Example: r,n = rack, node within rack with

Failure Group: collection of disks that could r! r
|

CEAISE

FG2 FG3 FG4

replication 3:
— second copy placed in a different rack
— third copy: same rack, but different node 1.1 12 2.1 22
o ~ S A ~ J
rack 1 rack 2

18/12/2014 GPFS and OpenStack Integration

GPFS FPO file system example

Cluster Configuration parameters:

readReplicaPolicy local

restripeOnDiskFailure yes
File System (storage pool):
allowWriteAffinity=yes

Switch 1 Switch 2

Replication factor:
data and metadata = 3

Failure groups:

Nsd1:failure group 1,0
Nsd2:failure group 1,1
Nsd3:failure group 2,0
Nsd4:failure group 2,1

> >
Primary copy Third copy Second copy

18/12/2014 GPFS and OpenStack Integration

15

OpenStack Architecture

Horizon
Dashboard
Quantum o
tmgfs) Provides .
Provides Ul for Provides
— Ul for Ul for
‘w Nova / Provides
Network Auth for
Provide
@ network
connectivity Stores
—_— for Compute images in
g Provides g
~—~— volumes
& for
B|OCK X Provides
StOl'age pAI'O:'l:dfOS Provides Auth for
D AR00 Auth for
L — \ Provides
3 Auth for
Provides Y
= Auth for
Cinder /

18/12/2014

.

Identity

GPFS and OpenStack Integration

Stores disk
files in

;

Storage

Q Q

httpzi/ken.pepple.info

Keystone

http://openstack.org

16

GPFS as the Enterprise
Storage Layer for OpenStack

Nova / Glance (Compute) Cinder (Volumes) Swift (Objects)
GPFS Plaj Bment Driver GPFS Vol Ime Driver GPFS Ot Bet Driver
GPFS: A Reliable, Scalable, POSIX-Compliant Enterprise File System that stores

|

Compute images, Volumes and Objects

A common storage layer for images, volumes and
objects

— Avoids data copy
— Local access to data

* Adds enterprise storage management features to
OpenStack

18/12/2014 GPFS and OpenStack Integration 17

Enabling GPFS in Cinder

* To use the Block Storage service with the GPFS driver, set the volume_driver in cinder.conf:
volume driver = cinder.volume.drivers.ibm.gpfs.GPFSDriver

* Parameters:

gpfs images_ dir <path of the Image service repository>
gpfs images share mode=copy on write

gpfs max clone depth=0

gpfs mount point base <path of the GPFS directory where Block Storage volume and snapshot
files are stored>

gpfs sparse volumes=True

gpfs storage pool <storage pool that volumes are assigned to. By default, the system storage
pool is used>

* Volume creation options:
data pool name
replicas <number of replicas>

write affinity depth <allocation policy for the volume fileif allow-write-affinityis
set in GPFS file system>

block group factor
write affinity failure group

18/12/2014 GPFS and OpenStack Integration 18

Cinder: How GPFS driver works

Similar to NFS driver

Instances do not actually access a storage device at the
block level

Volume files are created in a GPFS file system and
mapped to instances, which emulate a block device

Optionally, the Image Service can be configured to
store images on a GPFS file system.

— if both image data and volume data reside in the same
GPFS file system, the data from image file is moved
efficiently to the volume file using copy-on-write (COW)
optimization strategy.

Cinder: Volume Services

Hypervisor Node ! Storage Node

| | 1 |)

* Cinder driver interface points: Create, Delete, Attach and Detach Volumes,
Create Snapshot, Create volume from snapshot, Clone a volume

Create Volume Attach Volume
1. User initiates volume creation through 1. User initiates volume attach by selecting the
;O'Itlhzgrr]eoru((:e(;?qé?w?jgilmai a call to the GPFS volume and the virtual machine

‘ g P 2. The virtual machine and the volume objects

driver d he N Dri hich

3. GPFS driver creates a (sparse) file and sets are passed to the Nova Driver which passes
the right placement based on user them to Libvirt volume driver o
parameters and policy. This operation is 3. The Libvrt volume driver invokes Libvirt
“instantaneous”. interface to attach the volume file on GPFS
4. Create from snapshot is similar, except it mount point to the specified virtual

uses GPFS COW mechanism machine

18/12/2014 GPFS and OpenStack Integration 20

Glance: Instance Deployment

Hypervisor Node ; Image Repository

I

I []
I

| o =

 GPFS COW Driver: Implements image creation and caching functions.
Interfaces with GPFS to create instance images for provisioning.

* Image Service Adapter: Implements the interface with the image
repository including image transport.

e GPFS Store Driver: Extends the Store base class to implement GPFS
specific functions.

Instance Deployment

1. User selects an image for instance creation — this refers to an image via
the GPFS Store Driver

2. The Nova Image Service adapter creates a link from image to HyperVisor
cache in the same file system

3. Nova clones the image using the COW Driver for GPFS and creates a VM
image instance in a per-HyperVisor cache in the same file system.

4. Libvirt uses the VM image instance to deploy the VM

18/12/2014 GPFS and OpenStack Integration 21

VM provisioning via File Clones

)

I Hypervisor

J

* the placement of master images and their Clones is independent
* Clone can be on a different node respect to master

— Writes remain local
— Reads are streamed

» Different replication level for the cloned instances
 Automatic dedup — both storage and in-memory
* Format and hypervisor agnostic

18/12/2014 GPFS and OpenStack Integration 22

Transparent Block Level Replication
and Recovery

)

Hypervisor 1

Hypervisor 2 Hypervisor 4

Replica 2

Replica 1

* Pipelined replication
* Configurable file-level replication

— Store first replica on Hypervisor 2,
— stripe replica 2 on Hypervisors 3 and 4

* Transparent failover
* Distributed restripe

18/12/2014 GPFS and OpenStack Integration 23

Enabling GPFS for Glance and Nova

* The initial set of configuration flags for Glance
(glance-api.conf and glance-cache.conf):

filesystem store datadir =<images path in gpfs

filesystem, same as gpfs 1mages dir in cinder.conf
>

* The initial set of configuration flags for Nova:

instances path=<instances path in gpfs filesystem>
disk cachemodes=file=writeback

OpenStack Integration: Object Store

Obiject Services

[Proxy]
AN
(Return a set of nodes to read from) Get ‘ | l Put (Return a node to write to)
p
Map Abstraction
~ GPFsDriver |
Swift Storage Swift Storage Swift Storage Swift Storage Swift Storage

File/Block Node Node Node Node Node
Services GPFS

Two scenarios:
 shared Disks

— data protection based on RAID, no need for replication
* Local Disks
— Up to 3-way data replication managed by GPFS

18/12/2014 GPFS and OpenStack Integration 25

OpenStack Swift and GPFS

* Combination of GPFS and Swift consolidate
File and Object under a single shared storage
infrastructure.

* The global namespace eliminates the physical
client-to-server mappings
— ideal platform to perform common storage

management tasks, such as automated storage
tiering and user transparent data migration.

OpenStack Swift and GPFS: Outline

* How to take advantage of the benefits of GPFS
when building an object storage solution

 How to install OpenStack Swift on GPFS

— preferred practices for configuring and tuning
both Swift and GPFS

e The Swift and GPFS features that have been
tested

Use cases

e Sites that already use GPFS and are seeking to
support Swift in the same data plane as their
existing data.

* Sijtes that are seeking an enterprise-ready,
cost-efficient, and high-performing object
solution.

— For this use case, GPFS initially provides data
management for the object store only, but gives

users the option to extend to further types of
applications as their requirements grow.

Benefits

Data protection

— Delegating the responsibility of protecting data to GPFS (and not using Swift

three-way replication) increases both the efficiency and performance of the
system

— GPFS gives every node in the Swift cluster access to every object. If any single
node fails, object data is still available from all of the remaining nodes.

— For objects, there is no need to use Swift replication to make data available
from other nodes

Integration of file and object in a single system

Very large object support:

— The maximum single object size that has been tested is 5 TB. This is much
larger than the typical Swift object size limit (5 GB)

Enterprise storage management features:

— global namespace, encryption, backup, disaster recovery, ILM (auto-tiering),
tape integration, and remote caching

Definitions

GPFS Object Node:

— The physical access points that applications use to store and access
objects. These servers run the OpenStack Swift software and the GPFS
software.

Network Shared Disk (NSD):

— A logical unit number (LUN) that is provided by a storage subsystem for
use in a GPFS file system.

Storage pool:

— A collection of NSDs with similar characteristics.
Fileset:

— A sub-tree of a file system namespace
Replication:

— multiple copies of data and metadata for failure containment and
disaster recovery.

Placement of Object Store
components

Placing object store data in a separate GPFS management
entity called an “independent fileset” permits GPFS
information lifecycle management (/LM) (including
snapshots and backup) to uniquely identify and manage the
object store data.

Objects

— Most GPFS deployments have a single storage pool for data, but
the fileset that contains the object data can be mapped to a
separate storage pool to provide performance isolation.

Account and container

— Place account and container information in the same fileset as
the object data, which will ease the management of the data by
having all the data in a single data management entity.

Swift rings

e Every GPFS Object Node can access the shared file system, so all of

the rings are constructed using virtual devices rather than physical
devices.

* The virtual devices are subdirectories in the GPFS fileset created for
Swift data. When constructing the object ring, virtual devices are
added to the “localhost” node. This has the effect of giving every
proxy service local access to every virtual device.

* Note:

— Do not use a single virtual device to contain all object data to avoid
access contention between nodes.
It’s advisable to use a number of virtual devices.
One approach is to create a reasonable number of virtual devices (for
example, 10) for each GPFS Object Node that currently exists, or is
expected to exist, in the configuration.

Swift services

* Every GPFS Object Node can access every virtual device in the shared file
system, and some Swift object services can be optimized to take advantage
of this by running from a single GPFS Object Node:

swift-object-replicator runs to periodically clean up tombstone files from
deleted objects. It is run on a single GPFS Object Node and manages cleanup
for all of the virtual devices.

swift-object-updater is responsible for updating container listings with objects
that were not successfully added to the container when they were initially
created, updated, or deleted. Like the object replicator, it is run on a single
GPFS Object Node.

* swift-object-auditor service is not run on any node

swift-object-auditor is responsible for comparing the checksum in the object
file’s extended attributes with the checksum of the object data on disk. If a
discrepancy is discovered, the object file is moved to Swift’s quarantine
directory, with the expectation that the object-replicator will eventually
replace the quarantined object with a replica object instance. With GPFS
Storage Object, it is better to use storage controller capabilities, such as GPFS
Native RAID checksums and disk scrubbing/auditing capabilities.

Swift services on GPFS Object Nodes

Executes on GPFS Object Nodes

openstack-swift-account all
openstack-swift-account-auditor all
openstack-swift-account-reaper all
openstack-swift-account-replicator all
openstack-swift-container all
openstack-swift-container-auditor all
openstack-swift-container-updater all
openstack-swift-container-replicator all
openstack-swift-object all
openstack-swift-object-auditor none
openstack-swift-object-expirer All (started if object expiration is enabled)
openstack-swift-object-replicator single
openstack-swift-object-updater single

%@{‘@Eﬂck_swiﬂ_proxy GPFS and OpenStﬁhlntegraﬁon 34

GPFS installation and configuration

The GPFS software is not required on the controller
node where Keystone identity service running if it’s not

a Object Node.
e After the GPFS is installed and a GPFS cluster is
created, the following steps must be completed:
— Create a GPFS file system and an independent fileset.

— Mount the GPES file system on all Object Nodes and
ensure that the fileset is linked.
* The independent fileset will be used only for Swift object storage.
— Create the base directory where all object data will be

stored inside the newly created fileset.
* here this base directory is referred to as gpfs_object_base .

GPFS tuning for Swift data

e Setting the number of i-nodes

— The suggested Swift Partition Power to use is 8. With
this value, the maximum number of i-nodes needs to
be set to twice the maximum number of expected
objects

— To set the maximum i-node limit for a fileset, use the
following command:
mmchfileset FileSystem Fileset --inode-limit MaxNumlnodes[:NumInodesToPreallocate]

e Data and metadata cache

— Use mmchconfig to set this GPFS pagepool to be at
least 30% - 50% of memory on each GPFS Object
Node.

GPFS tuning (cont.)

e maxFilesToCache

— This parameter limits the total number of different files that can be cached at
one time. This needs to be set using mmchconfig to be large enough to handle

the number of concurrently open files (objects), plus allow caching of recently
used files.

e maxStatCache

— This parameter sets aside additional pageable memory to cache attributes of
files that are not currently in the regular file cache. Increasing this value can

improve the performance of background Swift services that scan directories.
* seqgDiscardThreshold

— The default for this value is 1 MB, which means that if you have a file that is
sequentially read and is greater than 1 MB, GPFS does not keep the data in
cache after consumption. Because everything in Swift is read sequentially,
unless this value is increased, GPFS will not cache anything; so this value needs

to be increased to the largest expected object size that needs to be cached in
memory.

System administration

considerations

 Adding a GPFS Object Node
— Add new node to GPFS cluster

— copy the existing ring files from any existing GPFS Object
Node to the new node

— Update load balancer configuration

— move selected virtual devices onto the new node by using
the swift-ring-builder set _info command

* Note:

— There is no movement of your data required when you
perform this operation. The ring structure is all that is
changed, and then the proxy services can send account and
container requests to the new node in addition to the
existing nodes

OpenStack Deployment example
on existing GPFS file system

1. Use existing GPFS file system
for initial deployment for Glance,
Cinder and Swift
2. If not satisfied with performance
move to FPO adding Compute node
disks to GPFS file system or better

(faster) shared disks K
e
e
\
E‘ / Storage pool FPO
-
Q;{:r%ep GPFS cluster

18/12/2014 GPFS and OpenStack Integration 39

e B R

This can be done
using GPFS policy and
without service
interrupting

References

IBM RedBook: A Deployment Guide for Elastic Storage Object
http://www.redbooks.ibm.com/abstracts/redp5113.html

GPFS-OpenStack Integration
http://www.gpfsug.org/wp-content/uploads/
2013/05/24-04-13 _GPFS-OpenStack_DS.pdf

Video demo OpenStack® Cinder driver support for GPFS
https://www.youtube.com/watch?v=g-0O-VPsOK8w

OpenStack Documentation portal
http://docs.openstack.org/juno/config-reference/content/GPFS-
driver-background.html

18/12/2014

Questions?

GPFS and OpenStack Integration

41

18/12/2014

Backup slides

GPFS and OpenStack Integration

42

Geo distributed GFPS Object Store

HTTP Swift
Requests

Eil Load Balancer

" Additional 4 / Memcach)

Services in Proxy Proxy

Cluster 1] service Service || GPFS Object

: Keystone . Nodes
: Authentication i é)el:jvei:te gelﬂrelzte
i Service ;
5 ; GPFS GPFS
. Swift Services —

.......................... Storage
Network
-
Fast Tape
B

Geo-Distributed GPFS Object Store

18/12/2014 GPFS and OpenStack Integration

43

GPFS Elastic Storage Vision

Single Name Space

Object | e Virtualization A

Access
Cinder
Glance

File Sharing
: -! -! oL) SMBS)

_Nova |
\Manila

VADP | SRM
VAAI [vSphere
Pl /

Active . Cloud
| | e Elastic Storage Software Storage
- — -

. sm
- — Dlsk
18/12/2014 GPFS and OpenStack Integration 44

© 2014 18M Corporation

GPFS 4.1 new features

Clustered NFS (cNFS)
— NFSv4 and IPv6 support

Quota management
— enable and disable on-line

— quota files are metadata now (no user.quota, group.quota files
in FS)

Local read-only cache (LROC)

— Overflow pagepool to local storage (SSD)

— more RAM for application

FPO - file placement optimizer (Hadoop-like)
— data locality when restriping

— AIO performance

— Mixed storage pools in one file system

GPFS 4.2: NSD V.2 format

provides the following benefits:

* Includes a partition table so that the disk is
recognhized as a GPFS device

* Adjusts data alignment to support disks with a 4
KB physical block size

* Adds backup copies of some key GPFS data
structures

* Expands some reserved areas to allow for future
growth

