
Interaction with the Kernel

XII Seminar on Software for Nuclear, Subnuclear and Applied Physics
May 24-29 2015, Alghero

Friday, May 29, 15

Optional User classes

Main Classes

Initialization classes Action classes

G4VUserDetectorConstruction

G4VUserPhysicsList

G4UserPrimaryGeneratorAction

G4UserRunAction
G4UserEventAction
G4UserTrackingAction
G4UserStackingAction
G4UserSteppingAction

Optional classes

✓Five (or more) concrete base classes can be implemented by the user, adopering
the virtual member functions to obtain the control of the simulation at various
stages

✓Each member function of the base classes has a dummy implementation

Friday, May 29, 15

Optional User classes

Main Classes

Initialization classes Action classes

G4VUserDetectorConstruction
G4UserActionInitialization
G4VUserPhysicsList

G4UserPrimaryGeneratorAction

G4UserRunAction
G4UserEventAction
G4UserTrackingAction
G4UserStackingAction
G4UserSteppingAction

Optional classes

✓Five (or more) concrete base classes can be implemented by the user, adopering
the virtual member functions to obtain the control of the simulation at various
stages

✓Each member function of the base classes has a dummy implementation

Friday, May 29, 15

Optional User classes

❖The user may implement the member functions he desires in his/her
derived classes

 E.g. one may want to perform some action at each tracking step

❖ In the Multi-threaded mode the user action classes must be registered to the
G4RunManager class, which manages the simulation, via the ActionInitialization
class.

 1. The ActionInitialization class is initialized, using the SetUserInitialization
method:

 runManager->SetUserInitialization(new myUserInitialization)

 2. The action classes are registered in the ActionInitialization class using the

SetUserAction method:

 runManager->SetUserAction(new myRunAction)

Friday, May 29, 15

myActionInitialization (MT mode)

❖ Thread local user actions:

void MyActionInitialization::Build() const
{
 //Set mandatory classes
 SetUserAction(new MyPrimaryGeneratorAction());
 // Set optional user action classes
 SetUserAction(new MyEventAction());
 SetUserAction(new MyRunAction());
}

❖ Register the RunAction for the master

void MyActionInitialization::BuildForMaster() const
{
 // Set optional user action classes
SetUserAction(new MyRunAction());
}

In MT mode is mandatory for action class instances

Friday, May 29, 15

Geant4 Terminology

Keywords:

Event, Run, Step, Track

Friday, May 29, 15

The Event (G4Event)

➡The Event is the basic unit of the Simulation

➡ At the beginning of the simulation, the primary track are generated and are
 pushed in a stack

➡ A track is popped up from the stack one-by-one and tracked

✤ Secondary tracks are also pushed into the stack
✤ When the stack gets empty, the processing of the event is completed

➡G4Event class represents an event. At the end of the event it has:

✤ List of primary vertices and particles (the input)
✤ Hits and Trajectory collections (the outputs)

➡G4EventManager class manages the event.
➡G4UserEventAction class manages the event.

Friday, May 29, 15

The Run (G4Run)

➡The Run is a collection of events and in analogy with a real experiment it
starts with the command: “Beam On”

During the run the user cannot change:

✓ The Geometrical Setup
✓The adopted Physics Models and Processes
✓ The Source Features

➡The G4RunManager class manages each the processing of each run,
by means of the:

✤G4Run class
✤G4RunAction class

Friday, May 29, 15

The Step(G4Step)

➡The particle trajectory can be considered as a sequence of segments called
“step”
➡G4Step represents a step in particle propagation
➡A G4Step object stores transient information of the step and is updated
every time a process is invoked

The user can retrieve the desired information from each step composing
the total track after the step is completed

➡The UserSteppingAction method of this class get the pointer of the G4Step

➡The G4UserSteppingAction is the class devoted to the retrival of information
 from the step

Friday, May 29, 15

The Track (G4Track)

 The Track is a snapshot of a particle and it is represented by the G4Track
class

 It keeps current information of the particle (i.e. energy, momentum,
position, polarization, ..)
It is updated after every step

The track object is deleted when:

 It goes outside the world volume
 It disappears in an interaction (decay, inelastic scattering)
 It is slowed down to zero kinetic energy and there are no 'AtRest'

 processes
 It is manually killed by the user

 No track object persists at the end of the event
G4TrackingManager class manages the tracking
G4UserTrackingAction is the optional User hook

Friday, May 29, 15

Classification of the tracks

T1T2

T3

T4 T5

T6
T7

Primary particle
ParentID=0

Secondary particles
ParentID=1

To retrieve the information about the track, it is possible to invoke the method GetParentID() (and
others) of the G4Track class:

G4int parent_ID = aTrack->GetParentID();

Tracking order follows last in first out rule:

T1 ->T3 -> T5 -> T7 -> T4 -> T6 -> T2

Friday, May 29, 15

Tracks

Friday, May 29, 15

The Step in Geant4
Boundary

Volume 1 Volume 2

Step Post-Step point

Pre-Step point

✦ In case a step is limited by a volume boundary, the end point physically stands on the
 boundary and it logically belongs to the next volume

✦G4SteppingManager class manages processing a step;
✦G4UserSteppingAction is the optional User hook

✦The G4Step contains the information about the Pre-Step point and the Post-Step point and
 the “variation “ of a physical quantity in the step (i.e the energy loss on the step).
 To access these information or objects instance it is possible to use manu Get method of
 the G4Step class:

G4StepPoint *PreStep=track->GetPreStepPoint()

✦For each point (Pre-step and Post-step) the user knows the crossed volume:

PreStepX=PreStep->GetPosition().x()

Friday, May 29, 15

The geometry boundary
‣To check, if a step ends on a boundary, one may compare if the physical volume of pre

and post-step points are equal

One can also use the step status:

‣Step Status provides information about the process that restricted the step length

It is attached to the step points: the pre has the status of the previous step, the post
of the current step

‣If the status of POST is “fGeometryBoundary” the step ends on a volume boundary
(does not apply to word volume)

‣To check if a step starts on a volume boundary you can also use the step status of the
PRE-step point

if(preStepPoint->GetStepStatus()==fGeomBoundary){
G4cout<<“Step starts on geometry boundary”<<G4endl;}

if(postStepPoint->GetStepStatus()==fGeomBoundary(){
G4cout<<“Step ends on geometry boundary”<<G4endl;}

Friday, May 29, 15

Boundary and step

Pre step Point

Step status is
 fGeomBoundary

Step starts
on boundary

Post step Point

Pre
step Point

Step ends
on boundary

Post step
 Point

Step status is
 fGeomBoundary

Boundary

Volume 1 Volume 2 Volume 3

Friday, May 29, 15

User Action classes
UserRunAction

➡Used to initialise, analyse, store histogram at run level

➡Has two methods: BeginOfRunAction() and EndOfRunAction() used to
 retrieve information respectively at the beginning and the end of the run

UserEventAction

➡Retrieve the information at event level, one can apply an event selection

➡ Has two methods BeginOfEventAction() and EndOfEventAction()

UserStackingAction

➡Used to classify the tracks and to decide the priority of tracks.

UserSteppingAction

➡Retrieve the wanted information of the particle at the end of the step, invoking a
 specific method

Friday, May 29, 15

Status of the tracks

Friday, May 29, 15

Output stream (G4cout)
 G4cout is a iostream object defined by Geant4.

✤The usage of these objects is exactly the same as the ordinary std::cout except
that the output streams will be handled by G4UImanager

✤ G4endl is the equivalent of std::endl to end a line

✓Output strings may be displayed on another window or stored in a file
✓One can also use the file streams (std::ofstream) provided by the C++ libraries

G4double eKin = aStep -> GetPreStepPoint() -> GetKineticEnergy();
G4double PosX = aStep->GetTrack()->GetPosition().x();
G4double PosY = aStep->GetTrack()->GetPosition().y();
G4double PosZ = aStep->GetTrack()->GetPosition().z();
G4String material= aStep -> GetTrack() -> GetMaterial() -> GetName();
G4String volume= aStep->GetTrack()->GetVolume()->GetName();

G4cout <<“Kinetic energy”<<“ ”<< eKin << “ ”
 <<“ X Position “<< “ ” << PosX << “ ”
 <<“ Y Position “<< “ ” << PosY << “ ”
 <<“ Z Position “<< “ ” << PosZ << “ ”
 <<“ Material “<< “ ” << material << “ ”
 <<“ Volume “<< “ ” << volume << “ ”
 << G4endl;

Friday, May 29, 15

Write an ASCII file

1. Add to the include list of your class the <fstream> header file
•This will allow to use the C++ libraries for stream on file

2. Put into the class declaration (file .hh) an ofstream (=output file stream) object (or
pointer):
std::ofstream myFile;

In this way, the file object will be visible in all methods of the class
3. Open the file, in the class constructor, or into a specific method:

 myFile.open(“filename.out”, std::ios::trunc);

•To append data to an existing file, you must specify std::ios::app

 std::ofstream myFile("Data.out", std::ios::app);
 myFile << eKin << '\t' << " "
 << EventID << ‘\t’<< “ “
 << PreStepX << '\t' << " "
 << PreStepY << '\t' << " "
 << PreStepZ << '\t' << " “
 << G4endl;

•This could be for instance the EndOfEventAction() of the G4UserEventAction user
class or in the UserSteppingAction class

Friday, May 29, 15

Output

9.86726	
 0	
 317.026	
 -2.42728	
 -10.5573	

9.87157	
 1	
 317.026	
 -3.56108	
 -4.84368	

9.8466	
 2	
 317.026	
 -7.58074	
 5.06641	

9.848	
 3	
 317.026	
 1.00224	
 5.56123	

9.83987	
 4	
 317.026	
 2.6007	
 2.84975	
 	

9.83912	
 5	
 317.026	
 -9.34777	
 -1.12885	

9.85523	
 6	
 317.026	
 0.903539	
 -5.44811	

9.85022	
 7	
 317.026	
 -7.91006	
 4.18064	

9.83825	
 8	
 317.026	
 -6.61794	
 -3.01946	

9.86582	
 9	
 317.026	
 -5.28934	
 4.04027	

9.85413	
 10	
 317.026	
 -5.54807	
 9.7194	
 	

9.83946	
 11	
 317.026	
 14.144	
 -1.08552	

9.86147	
 12	
 317.026	
 0.045469	
 1.76874	

9.8513	
 13	
 317.026	
 0.562574	
 -3.44896	

9.82307	
 14	
 317.026	
 4.52927	
 -7.51171	

9.87058	
 15	
 317.026	
 -4.71805	
 -6.84709	
 	

9.84838	
 16	
 317.026	
 9.18044	
 2.37358	

9.77604	
 17	
 317.026	
 7.93081	
 -2.60215	

9.86598	
 18	
 317.026	
 -5.56149	
 -0.43634	
 	

9.85405	
 19	
 317.026	
 5.32018	
 0.742721	

9.85778	
 20	
 317.026	
 -10.236	
 4.99975	
 	

9.88042	
 21	
 317.026	
 7.52852	
 0.867449	
 	

9.84586	
 22	
 317.026	
 1.80864	
 4.68796	

...

Data.out

Friday, May 29, 15

G4analysis tool

Friday, May 29, 15

Data analysis in Geant4

Basic classes for data analysis have recently been implemented in Geant4
(g4analysis)

✦Support for histograms and ntuples

✦Output in ROOT, XML, HBOOK and CSV (ASCII)

The resulting files can be opened and analyzed by tools such as: Gnuplot,
Excel, OpenOffice, Matlab, Origin, ROOT, PAW,...

Appropriate only for easy/quick analysis: for advanced tasks, the user must
write his/her own code and to use an external analysis tool

Friday, May 29, 15

Native Geant4 analysis classes

✤ A basic analysis interface is available in Geant4 for histograms (1D and 2D) and ntuples
➡Make life easier because they are MT-compliant (no need to worry about the

interference of threads)
✤ Unique interface to support different output formats ROOT, AIDA XML, CSV and HBOOK

➡Code is the same, just change one line to switch from one to an other
✤ Everything done via the public analysis interface G4AnalysisManager$

➡Singleton class: Instance()
➡UI commands available for creating histograms at run-time and setting their properties

✤ Selection of output format is hidden in a user-defined .hh file
✤ All the rest of the code unchanged

➡Unique interface

#ifndef MyAnalysis_h
#define MyAnalysis_h 1

#include "g4root.hh"
//#include "g4xml.hh"
//#include "g4csv.hh" // can be used only
with ntuples

#endif

Friday, May 29, 15

Open file and book histograms

#include "MyAnalysis.hh"

void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->SetVerboseLevel(1);
 man->SetFirstHistoId(1);

 // Creating histograms
 man->CreateH1("h","Title", 100, 0., 800*MeV);
 man->CreateH1("hh","Title",100,0.,10*MeV);

 // Open an output file
 man->OpenFile("myoutput");
}

Friday, May 29, 15

Fill histograms and close

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->FillH1(1, fEnergyAbs);
 man->FillH1(2, fEnergyGap);
}
void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man->Write();
 man->CloseFile();
}
MyRunAction::~MyRunAction()
{
 delete G4AnalysisManager::Instance();
}

Friday, May 29, 15

Analysis and UI commands

UI support available, to change parameters (e.g. file name) at run-time:

/analysis/setFileName name # Set name for the
 histograms and ntuple file
/analysis/setHistoDirName name # Set name for the
 histograms directory
/analysis/setNtupleDirName name # Set name for the
 histograms directory
/analysis/setActivation true|false # Set activation option
/analysis/verbose level # Set verbose level

/analysis/h1/create
 name title [nbin min max] [unit] [fcn] [binScheme] #
Create 1D histogram

Friday, May 29, 15

Ntuples

G4tool supports ntuples

➡Any number of ntuples, each with any number of columns
➡The content can be int/float/double

For more complex tasks (e.g. full functionality of ROOT TTrees)
have to link ROOT directly

Similar strategy as for histograms. Access happens through the
common interface G4AnalysisManager
•Saved on the same output file with histograms

Friday, May 29, 15

Book ntuples

#include "MyAnalysis.hh"
void MyRunAction::BeginOfRunAction(const G4Run* run)
{
 // Get analysis manager
 G4AnalysisManager* man = G4AnalysisManager::Instance();
 man-> SetFirstNtupleId(1);

 // Creating ntuple
 man->CreateNtuple("name", "Title");
 man->CreateNtupleDColumn("Eabs");
 man->CreateNtupleDColumn("Egap");
 man->FinishNtuple();

 man->CreateNtuple("name2","title2");
 man->CreateNtupleIColumn("ID");
 man->FinishNtuple();
}

Friday, May 29, 15

Fill ntuples

#include "MyAnalysis.hh"
void MyEventAction::EndOfEventAction(const G4Run* aRun)
{
 G4AnalysisManager* man =
G4AnalysisManager::Instance();
 man->FillNtupleDColumn(1, 0, fEnergyAbs);
 man->FillNtupleDColumn(1, 1, fEnergyGap);
 man->AddNtupleRow(1);

 man->FillNtupleIColumn(2, 0, fID);
 man->AddNtupleRow(2);

}

Friday, May 29, 15

