
G A P Cirrone, PhD - INFN-LNS (Italy) - pablo.cirrone@lns.infn.it

Sensitive Detector
in Geant4

GAP Cirrone, L Pandola  
 

XII Seminar on Software for Nuclear, Subnuclear and Applied Physics,  
Porto Conte, Alghero, May 24-29, 2015

1

Once primary beam, geometry and physics is ready,  
the simulation run silently …..

You may use hooks (G4UserSteppingAction, etc.)

Full access to all information but do-it-yourself

You have to add a bit of code to extract informations

There are 3 ways

Use the sensitive detector
(G4VSensitiveDetector)

Create User scores attaching them to a given volume

Built-in scoring command

Sensitive Detector (SD)
■ A logical volume becomes sensitive if it has a pointer to

a sensitive detector (G4VSensitiveDetector)
■ A sensitive detector can be instantiated several times,

where the instances are assigned to different logical
volumes
■ Note that SD objects must have unique detector names
■ A logical volume can only have one SD object attached

■ Two possibilities to make use of the SD functionality:
■ Create your own sensitive detector (using class

inheritance)
■ Highly customizable

■ Use Geant4 built-in tools: Primitive scorers

Adding sensitivity to a logical
volume

■ Create an instance of a sensitive detector
■ Assign the pointer of your SD to the logical volume of

your detector geometry
■ Must be done in ConstructSDandField() of the user

geometry class

create
instance

assign to logical
volume

G4VSensitiveDetector* mySensitive
 = new MySensitiveDetector(SDname="/MyDetector");

boxLogical->SetSensitiveDetector(mySensitive);
(or)
SetSensitiveDetector("LVname",mySensitive); assign to logical

volume
(alternative)

The ingredients of user SD
■ A powerful and flexible way of extracting information

from the physics simulation is to define your own SD
■ Derive your own concrete classes from the base

classes and customize them according to your needs

Concrete class Base class

Sensitive Detector MySensitiveDetector G4VSensitiveDetector

Hit MyHit G4VHit

Template class

Hits collection G4THitsCollection<MyHit*>

Hit class - 1

■ Hit is a user-defined class which derives from the base
class G4VHit. Two virtual methods
■ Draw()
■ Print()

■ You can store various types of information by
implementing your own concrete Hit class

■ Typically, one may want to record information like
■ Position, time and ΔE of a step
■ Momentum, energy, position, volume, particle type of a

given track
■ Etc.

Hit class - 2

A “Hit” is like a “container”, a empty box which will
store the information retrieved step by step

The Hit concrete class (derived by G4VHit)
must be written by the user: the user must

decide which variables and/or information
the hit should store and when store them

X =

Y =

T =

ΔE =

The Hit objects are created and filled by the
SensitiveDetector class (invoked at each step in detectors

defined as sensitive). Stored in the “HitCollection”, attached to
the G4Event: can be retrieved at the EndOfEvent

Hit class - 3

Example

data member (private)

public methods to
handle data member

Geant4 Hits

Since in the simulation one may have different sensitive
detectors in the same setup (e.g. a calorimeter and a Si
detector), it is possible to define many Hit classes (all

derived by G4VHit) storing different information

X =

Y =

T =

ΔE =

Class Hit1 : public
G4VHit

Z =

Pos =

Dir =

Class Hit2 : public
G4VHit

Hits Collection - 1
At each step in a detector defined as sensitive, the method
ProcessHit() of the user SensitiveDetector class is
inkoved: it must create, fill and store the Hit objects

X = 1

Y = 2

T =3

ΔE = 1

Step 1

X = 2

Y = 0

T =3.1

ΔE = 2

Step 2

X = 3

Y = 2

T =4

ΔE = 3

Step 3

X = 3

Y = 2

T =6

ΔE = 1

Step N

.....

Hits collection (= vector<Hit>)

Hits Collection - 2
■ Once created in the sensitive detectors, objects of the

concrete hit class must be stored in a dedicated
collection
■ Template class G4THitsCollection<MyHit>, which is

actually an array of MyHit*
■ The hits collections can be accesses in different phases

of tracking
■ At the end of each event, through the G4Event (a-

posteriori event analysis)
■ During event processing, through the Sensitive Detector

Manager G4SDManager (event filtering)

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

ΔE = 1

X = 2

Y = 0

T =3.1

ΔE = 2

X = 3

Y = 2

T =4

ΔE = 3

X = 3

Y = 2

T =6

ΔE = 1.....

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1)

HCofThisEvent

Attached to
G4Event*

Hits Collections of an event

■ A G4Event object has a G4HCofThisEvent
object at the end of the event processing (if it
was successful)
■ The pointer to the G4HCofThisEvent object can be

retrieved using the
G4Event::GetHCofThisEvent() method

■ The G4HCofThisEvent stores all hits
collections created within the event
■ Hits collections are accessible and can be processes

e.g. in the EndOfEventAction() method of the
User Event Action class

SD and Hits

■ Using information from particle steps, a
sensitive detector either
■ constructs, fills and stores one (or more) hit object
■ accumulates values to existing hits

■ Hits objects can be filled with information in
the ProcessHits() method of the SD
concrete user class à next slides
■ This method has pointers to the current G4Step and to

the G4TouchableHistory of the ReadOut geometry
(if defined)

Sensitive Detector (SD)

■ A specific feature to Geant4 is that a user can provide
his/her own implementation of the detector and its
response à customized

■ To create a sensitive detector, derive your own
concrete class from the G4VSensitiveDetector
abstract base class
■ The principal purpose of the sensitive detector is to

create hit objects
■ Overload the following methods (see also next slide):

■ Initialize()
■ ProcessHits() (Invoked for each step if step starts in logical

volume having the SD attached)
■ EndOfEvent()

Sensitive Detector

User
concrete
SD class

SD implementation: constructor
■ Specify a hits collection (by its unique name) for each type

of hits considered in the sensitive detector:
■ Insert the name(s) in the collectionName vector

Base class

SD implementation: Initialize()
■ The Initialize() method is invoked at the beginning of each event
■ Construct all hits collections and insert them in the G4HCofThisEvent object,

which is passed as argument to Initialize()
■ The AddHitsCollection() method of G4HCofThisEvent requires the collection

ID
■ The unique collection ID can be obtained with GetCollectionID():

■ GetCollectionID() cannot be invoked in the constructor of this SD class (It is required
that the SD is instantiated and registered to the SD manager first).

■ Hence, we defined a private data member (collectionID), which is set at the first call
of the Initialize() function

SD implementation: ProcessHits()
■ This ProcessHits() method is invoked for every step in the

volume(s) which hold a pointer to this SD (= each volume defined as
“sensitive”)

■ The main mandate of this method is to generate hit(s) or to
accumulate data to existing hit objects, by using information from the
current step
■ Note: Geometry information must be derived from the

“PreStepPoint”

// 1) create hit

// 2) fill hit

// 3) insert in the collection

G4bool

SD implementation: EndOfEvent()

■ This EndOfEvent() method is invoked at the
end of each event.
■ Note is invoked before the EndOfEvent function of

the G4UserEventAction class

Processing hit information - 1

■ Retrieve the pointer of a hits collection with the
GetHC()method of G4HCofThisEvent collection
using the collection index (a G4int number)

■ Index numbers of a hit collection are unique and don’t
change for a run. The number can be obtained by
G4SDManager::GetCollectionID(“name”);

■ Notes:
■ if the collection(s) are not created, the pointers of the

collection(s) are NULL: check before trying to access it
■ Need an explicit cast from G4VHitsCollection (see

code)

Processing hit information - 2

■ Loop through the entries of a hits collection to
access individual hits
■ Since the HitsCollection is a vector, you can use

the [] operator to get the hit object
corresponding to a given index

■ Retrieve the information contained in this hit
(e.g. using the Get/Set methods of the
concrete user Hit class) and process it

■ Store the output in analysis objects

Process hit: example

retrieve
index

retrieve all hits
collections

retrieve hits collection
by index

loop over individual
hits, retrieve the data

The HCofThisEvent
Remember that you may have many kinds of Hits

(and Hits Collections)

X = 1

Y = 2

T =3

ΔE = 1

X = 2

Y = 0

T =3.1

ΔE = 2

X = 3

Y = 2

T =4

ΔE = 3

X = 3

Y = 2

T =6

ΔE = 1.....

Z = 5
Pos =
(0,1,1)
Dir
=(0,1,0)

Z = 5.2
Pos =
(0,0,1)
Dir
=(1,1,0)

Z = 5.4
Pos =
(0,1,2)
Dir
=(0,1,1)

HCofThisEvent

Attached to
G4Event*

Recipe and strategy - 1

■ Create your detector geometry
■ Solids, logical volumes, physical volumes

■ Implement a sensitive detector and assign an
instance of it to the logical volume of your
geometry set-up
■ Then this volume becomes “sensitive”
■ Sensitive detectors are active for each particle steps, if

the step starts in this volume

Recipe and strategy - 2

■ Create hits objects in your sensitive detector using
information from the particle step
■ You need to create the hit class(es) according to your

requirements
■ Store hits in hits collections (automatically

associated to the G4Event object)
■ Finally, process the information contained in the hit

in user action classes (e.g. G4UserEventAction)
to obtain results to be stored in the analysis object

Native Geant4 scoring

Extract useful information
■ Geant4 provides a number of primitive scorers,

each one accumulating one physics quantity (e.g.
total dose) for an event

■ This is alternative to the customized sensitive
detectors (see later in this lecture), which can be
used with full flexibility to gain complete control

■ It is convenient to use primitive scorers instead of
user-defined sensitive detectors when:
■ you are not interested in recording each individual

step, but accumulating physical quantities for an event
or a run

■ you have not too many scorers

G4MultiFunctionalDetector

■ G4MultiFunctionalDetector is a concrete class derived
from G4VSensitiveDetector

■ It should be assigned to a logical volume as a kind of
(ready-for-the-use) sensitive detector

■ It takes an arbitrary number of
G4VPrimitiveSensitivity classes, to define the scoring
quantities that you need
■ Each G4VPrimitiveSensitivity accumulates one physics

quantity for each physical volume
■ E.g. G4PSDoseScorer (a concrete class of
G4VPrimitiveSensitivity provided by Geant4) accumulates
dose for each cell

■ By using this approach, no need to implement sensitive
detector and hit classes!

G4VPrimitiveSensitivity
■ Primitive scorers (classes derived from
G4VPrimitiveSensitivity) have to be registered to
the G4MultiFunctionalDetector
■ ->RegisterPrimitive(), ->RemovePrimitive()

■ They are designed to score one kind of quantity
(surface flux, total dose) and to generate one hit
collection per event
■ automatically named as

 <MultiFunctionalDetectorName>/<PrimitiveScorerName>
■ hit collections can be retrieved in the EventAction or

RunAction (as those generated by sensitive detectors)
■ do not share the same primitive score object among multiple

G4MultiFunctionalDetector objects (results may mix up!)

MyDetectorConstruction::ConstructSDandField()

{

 G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->RegisterPrimitive(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new G4PSDoseDeposit(“TotalDose”);

myScorer->RegisterPrimitive(totalDose);
}

instantiate multi-
functional detector

create a primitive
scorer (surface flux)

and register it

create a primitive
scorer (total dose)

and register it

attach to volume

For example ...

myCellScorer/TotalSurfFlux
myCellScorer/TotalDose

■ Concrete Primitive Scorers (à Application Developers Guide)
■ Track length

■ G4PSTrackLength, G4PSPassageTrackLength
■ Deposited energy

■ G4PSEnergyDepsit, G4PSDoseDeposit
■ Current/Flux

■ G4PSFlatSurfaceCurrent, G4PSSphereSurfaceCurrent,G4PSPassageCurrent,
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux

■ Others
■ G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep,

G4PSCellCharge

Some primitive scorers that
you may find useful

L : Total step length in the cell

SurfaceCurrent :
Count number of
injecting particles
at defined surface.

CellFlux :
Sum of L / V of
injecting particles  
in the geometrical cell.

V : Volume

A closer look at some scorers

■ A G4VSDFilter can be attached to
G4VPrimitiveSensitivity to define which kind of tracks
have to be scored (e.g. one wants to know surface flux of protons
only)
■ G4SDChargeFilter (accepts only charged particles)
■ G4SDNeutralFilter (accepts only neutral particles)
■ G4SDKineticEnergyFilter (accepts tracks in a defined range of

kinetic energy)
■ G4SDParticleFilter (accepts tracks of a given particle type)
■ G4VSDFilter (base class to create user-customized filters)

G4VSDFilter

MyDetectorConstruction::ConstructSDandField()

{

 G4VPrimitiveSensitivity* protonSurfFlux

 = new G4PSFlatSurfaceFlux(“pSurfFlux”);

G4VSDFilter* protonFilter = new

 G4SDParticleFilter(“protonFilter”);

protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->RegisterPrimitive(protonSurfFlux);

}

create a primitive
scorer (surface flux),

as before

create a particle
filter and add
protons to it

register the filter
to the primitive

scorer

register the scorer to the
multifunc detector (as

shown before)

For example ...

How to retrieve information -
part 1

■ At the end of the day, one wants to retrieve the
information from the scorers
■ True also for the customized hits collection

■ Each scorer creates a hit collection, which is attached
to the G4Event object
■ Can be retrieved and read at the end of the event,

using an integer ID
■ Hits collections mapped as
G4THitsMap<G4double>* so can loop on the
individual entries

■ Operator += provided which automatically sums up
hits (no need to loop)

How to retrieve information –
part 2

//needed only once
G4int collID = G4SDManager::GetSDMpointer()
 ->GetCollectionID("myCellScorer/TotalSurfFlux");

G4HCofThisEvent* HCE = event->GetHCofThisEvent();

G4THitsMap<G4double>* evtMap =
 static_cast<G4THitsMap<G4double>*>
 (HCE->GetHC(collID));

 std::map<G4int,G4double*>::iterator itr;
 for (itr = evtMap->GetMap()->begin(); itr !=
 evtMap->GetMap()->end(); itr++) {
 G4double flux = *(itr->second);
 G4int copyNb = *(itr->first);
}

Get ID for the
collection (given

the name)

Get all HC
available in this

event

Get the HC with the given
ID (need a cast)

Loop over the
individual entries of
the HC: the key of the
map is the copyNb, the
other field is the real

content

Command-based scoring
Thanks to the newly developed parallel navigation, an

arbitrary scoring mesh geometry can be defined which is
independent to the volumes in the mass geometry.

Also, G4MultiFunctionalDetector and primitive scorer classes
now offer the built-in scoring of most-common quantities

• Define a scoring mesh
/score/create/boxMesh <mesh_name>
/score/open, /score/close

• Define mesh parameters
/score/mesh/boxsize <dx> <dy> <dz>
/score/mesh/nbin <nx> <ny> <nz>
/score/mesh/translate,

• Define primitive scorers
/score/quantity/eDep <scorer_name>
/score/quantity/cellFlux <scorer_name>
currently 20 scorers are available

UI commands for scoring à no C++ required, apart
from instantiating G4ScoringManager in main()

• Define filters
/score/filter/particle <filter_name>
<particle_list>
/score/filter/kinE <filter_name> <Emin>
<Emax> <unit>
 currently 5 filters are available

• Output
/score/draw <mesh_name>
<scorer_name>
/score/dump, /score/list

39

How to learn more about
built-in scoring

examples/extended/runAndEvent/RE02  
(use of primitive scorers) 

 
examples/extended/runAndEvent/RE03  

(use of UI-based scoring)

Have a look at the dedicated extended
examples released with Geant4:

41

Thank you

