MonteCarlo simulations for dark-matter search experiments at accelerators: the Beam Dump Experiment - BDX - case

> A. Celentano INFN - Genova

Outline

- Introduction: light dark matter search at beam-dump experiments
 - Physics case
 - MC tools: scope and requirements
- Event generator for the signal
 - Computation strategy
 - Software implementation
 - DM production: MadGraph/MadEvent
 - DM interaction
 - Detector response: GEMC
- Event generator for the beam-related background
 - Requirements-computational issues
 - Brute-force approach
 - MCNP approach

How to search for new physics beyond the SM

Dark matter (DM) direct search mainly focused in the mass region 10 GeV -10 TeV

• WI M P: w e a k l y interacting massive particles with weak scale mass provides the correct DM relic abundance

• No signals seen yet

DM detection by measuring the (heavy) nucleus recoil of slow moving cosmological DM \rightarrow no experimental sensitivity to light DM (<1 GeV)

How to search for new physics beyond the SM

Accelerators-based DM search is covering a similar mass region but can extend the reach outside the classical DM hunting territory

Many theoretical suggestions and experimental attempts to extend the search region to:

• **Higher mass (> 10 TeV):** LHC, Rare decays, ...

How to search for new physics beyond the SM

Accelerators-based DM search is covering a similar mass region but can extend the reach outside the classical DM hunting territory

Many theoretical suggestions and experimental attempts to extend the search region to:

• **Higher mass (> 10 TeV):** LHC, Rare decays, ...

• Lower Mass (<10 GeV) MiniBoone@FNAL, SPS@CERN, PADME@LNF, **BDX@JLab**

• Main topic of this talk

Light dark matter model: dark photon portal

 Consider an additional U(1) hidden symmetry in nature: this leads to a kinetic mixing between the photon and the new gauge boson A'

 $\bigvee_{\Psi}^{\gamma} \bigvee_{\Psi}^{\Psi} \bigvee_{\Psi}^{\gamma'}$

 Ψ is a huge mass scale particle (M~1EeV) coupling to both SM and HS

• General hypothesis to incorporate new physics in the SM: the A' acts as a "portal" between the SM and the new sector

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{\varepsilon}{2} F'_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + m_A^2 A'^{\mu} A'_{\mu}$$

• Under A' interaction, ordinary charged matter acquires a new charge **ɛe**:

New interaction term:

 \mathbf{SM}

 $\varepsilon A'_{\mu}J^{\mu}_{EM}$

[Holdom, Phys. Lett. B166, 1986]

Hints for A' existence: muon anomalous magnetic moment

• Magnetic dipole moment of charged particle:

$$\vec{\mu} = \mathbf{g}_{s} \left(\frac{q}{2m}\right) \vec{s}$$

• SM tree-level prediction for a Dirac particle:

• Higher-order contributions:

Can be measured very accurately

Hints for A' existence: muon anomalous magnetic moment

 \rightarrow ~ 3 σ deviation experiment – SM prediction

[Hagiwara et al; Bennet hep-ex/0602035]

Hints for A' existence: muon anomalous magnetic moment

A dark photon with mass in the 10-100 MeV range could explain the anomaly

Dark photons and dark sector

Minimal model:

- A' interacts with γ trough kinetic mixing
- Dark sector particle χ interacts with A'

4 parameters: $M_{A'}, M_{\chi}, \varepsilon, g_d$

A' decay:

An extensive experimental effort is currently ongoing to search for visible dark-photon decays

Visible A' decay: current searches and constrains

Any γ -rich environment is suitable for A' searches.

- Fixed target with e⁻ beam
 - JLab, Mainz
- Fixed target with p beam
 - Fermilab
- Annihilation
 - BABAR, BELLE, KLOE
- Meson decay
 - KLOE, BES-3, WASA-COSY

So far, no positive A' evidences: limits in the parameters space

[For a complete review, see: http://www.bnl.gov/di2014/]

Dark photons and dark matter

Model:

• A' interacts with γ trough kinetic mixing

0

• Dark sector particle χ interacts with A'

4 parameters: $M_{A'}, M_{\chi}, \varepsilon, g_d$

A' production:
$$\sigma\propto arepsilon^2$$

A' decay:

Beam dump experiments with e⁻ beam

How to access the A' invisible decay: direct detection in a two-step process.

- Fixed-target: A' produced in the dump, decays promptly to invisible $\boldsymbol{\chi}$
- Detector: Neutral-current scattering of χ trough A' exchange, detect recoil. Different signals depending on the interaction (e⁻ scattering, coherent nuclear, quasi-elastic,..)

Number of events:

[arXiv:1307.6554]

Accelerator requirements

- **Beam current: critical.** The experimental sensitivity scales linearly with this parameter.
- Beam energy:
 - A' production and χ matter interaction cross-sections increase smoothly with the beam energy.
 - At low energy (E₀ ~ m_A), there is a further signal enhancement with E₀ due to increased detector acceptance (χ beam more focused forward).
- Beam structure:
 - A pulsed beam permits to reject uncorrelated backgrounds by making a time coincidence between the beam RF signal and an hit in the detector

Continuous beam: detector time resolution is a mandatory requirement.

$$R \simeq \frac{\delta T}{3\sigma} <\simeq 100$$

Pulsed beam: detector time resolution is not critical, if smaller than the bunch length.

$$R = \frac{1}{f \cdot \delta} = 2 \cdot 10^5 @ 50 Hz, 100 ns$$

χ - SM (detector) interaction

1) Quasi-elastic scattering on nucleons

The χ scatters quasi-elastically on a bounded nucleon in the detector producing a visible recoil (~ MeV)

Experimental requirements:

- Sensitivity to ~ MeV nucleon recoil (low detection thresholds)
- Low energy backgrounds rejection capability

2) Elastic scattering on electrons

The χ scatters elastically on an electron in the detector producing a well visible recoil (~ GeV)

Experimental requirements:

• Sensitivity to ~GeV electrons (EM showers)

Detector design and requirements

Signal detection:

- High density
- Low threshold for nucleon recoil detection (~ MeV)
- EM showers detection capability
- Scintillation-based detector

Background rejection / suppression:

- Segmentation
- Active veto
- Passive shielding
- Good time resolution

Inner detector:

- Single optical module (possibly made of multiple opt. channels with single readout)
- Matrix of modules aligned wrt the $\boldsymbol{\chi}$ beam

Backgrounds

Beam-related backgrounds:

1) Prompt backgrounds (γ/fast n):

- Can't be reject with the detector-beam RF time coincidence
- Shielding is required to reduce γ /fast n rate on the detector

2) Low energy / thermal n:

- Can apply detector-beam RF time coincidence
- Very low energy hits in the detector: cut with threshold.

3) Neutrinos:

- Neutrinos are emitted from at-rest processes:
 - $\pi^+ \rightarrow \mu^+ \overline{\nu}$
 - $\mu^+ \rightarrow e^+ \nu \overline{\nu}$
- Isotropic flux
- Can't be reduced trough shielding
- Further suppression:
 - Energy threshold
 - Beam RF-detector signal coincidence (not all processes are prompt)
 - Off-axis measurement

Backgrounds

Beam-unrelated backgrounds: all reduced by the beam RF – detector time coincidence

- 1) Cosmic neutrinos
 - Considering flux, interaction cross-sections, and thresholds the contribution is negligible.
- 2) Cosmic muons
 - Different background contributions (crossing/stopping/decaying/..).
 - Reduced trough shielding + VETO around the detector + threshold + signal topology (different from χ -p and χ -e interactions).
- 3) Cosmic neutrons
 - High-energy neutrons can penetrate the shielding and interact inside the detector, mimicking a χ -N interaction.
 - Reduced trough shielding + VETO around the detector + threshold.

The BDX experiment at Jefferson Laboratory

The ``BeamDump Experiment'' (BDX) is a recently proposed program at Jefferson Laboratory to search for low-mass dark-matter.

Jefferson Lab accelerator:

- Electron beam with tunable energy, up to 12 GeV
- Continuous beam, 2ns bunches
- I_{beam} < 800 nA @ Hall B
- $I_{beam} < 100 \ \mu A @$ Hall A, C

BDX detector design is currently being optimized

- Modular design, overall volume $\sim 2 \text{ m}^3$
- Each module:
 - Matrix of CsI crystals
 - Equipped with 2 veto layers, plastic-scintillator based
- Compact detector front face (~ 50x50 cm²)
- Detector placed ~ 20 m after the beam-dump

[BDX LOI: arXiv:1406.3028]

BDX experiment: reach

BDX accumulated charge: 10²² EOT

- Beam current: 100 µA (Hall-A / Hall – C option)
- Accelerator availability: 50%
- Run time: 1 calendar year

Elastic χ - e⁻ scattering:

• Almost background-free search.

Elastic χ - p scattering:

- Cosmogenic background is the main limiting factor.
- Beam-related background is negligible

MonteCarlo simulations: objectives

Outline

- Introduction: light dark matter search at beam-dump experiments
 - Physics case
 - MC tools: scope and requirements

• Event generator for the signal

• Computation strategy

- Software implementation
 - DM production: MadGraph/MadEvent
 - DM interaction
 - Detector response: GEMC
- Event generator for the beam-related background
 - Requirements-computational issues
 - Brute-force approach
 - MCNP approach

Event generator for the signal

Strategy: factorize the event generation, as in the real physical process

- χ -beam generator: simulate the interaction of the primary e⁻ beam in the dump and produce the secondary χ beam, with absolute normalization per EOT.
- **Recoils generator:** given the secondary χ-beam, produce the scattered particles in the detector: e⁻ and nucleons.
- **Detector simulation**: given the scattered e⁻ and nucleons, simulate the detector response.

Outline

- Introduction: light dark matter search at beam-dump experiments
 - Physics case
 - MC tools: scope and requirements

• Event generator for the signal

- Computation strategy
- Software implementation
 - DM production: MadGraph/MadEvent
 - DM interaction
 - Detector response: GEMC
- Event generator for the beam-related background
 - Requirements-computational issues
 - Brute-force approach
 - MCNP approach

Event generator for the signal: χ - beam

Process: $e^- + Z \rightarrow e^- + Z + \chi + \chi$ Goal:

- Compute the total χ flux per electron on target
- Generate final state 4-momenta according to $d\sigma$

Code: modified version of MadGraph/MadEvent

MadGraph/MadEvent: very popular tool in HEP, to compute tree-level cross-sections and generate events of a user-specified process. Models: SM + MSSM + HEFT + user-defined.

Written in Fortran77 + sch + Perl.

MadGraph/MadEvent provides:

- List all contributing sub processes
- Feynman diagrams for each sub process
- Cross section
- Unweighted events, Les-Houches ready (ROOT format is available trough ExRootAnalysis)
- Interfaces for PYTHIA / PGS available

[MadGraph: arXiv:1405.0301, http://madgraph.hep.uiuc.edu]

Goal: use MC methods to compute $I = \int_{a}^{b} f(s) ds$

Method: MC-average

- Extract N random numbers *s*, uniformly in [a,b]
- Compute $f(s_i)$
- Take the average

Goal: use MC methods to compute $I = \int_{a}^{b} f(s) ds$

Method: MC-average

- Extract N random numbers *s*, uniformly in [a,b]

Can we do better? Yes!

$$I_N = \frac{(b-a)}{N} \sum_{i=1}^N f(s_i) \longrightarrow I_N = \frac{1}{N} \sum_{i=1}^N f(s_i) / g(s_i) \equiv \frac{1}{N} \sum_{i=1}^N w_i$$

Use a different g(s) to extract random numbers s_i , to reduce variance: select g(s) as similar as possible to f(s), in term of "peaks". Can't use f itself, since I is required to extract random numbers (g must be normalized to 1)

Can we do better? Yes!

$$I_N = \frac{(b-a)}{N} \sum_{i=1}^N f(s_i) \longrightarrow I_N = \frac{1}{N} \sum_{i=1}^N f(s_i) / g(s_i) \equiv \frac{1}{N} \sum_{i=1}^N w_i$$

Use a different g(s) to extract random numbers s_i , to reduce variance: select g(s) as similar as possible to f(s), in term of "peaks". Can't use f itself, since I is required to extract random numbers (g must be normalized to 1)

Multi-channel approach:

• Each g_i ("channel") is normalized to 1.

$$g = \sum_{j} \alpha_{j} g_{j}$$

- α_i are "weights" (sum normalized to 1)
- *g* is a PDF for s, and can be used to extract random numbers
- $\langle w \rangle$ does not depend on the choice of α_i , but *Var* does

→ Use optimization techniques for α_j during MC calculation. **Caveats:**

- The computation of g(s) always requires the same time, also if one of the α is small, and the corresponding contribution negligible
- Weights may be correlated, and the optimization is not trivial

Special scenario:

- Assume that f(s) can be written as: $f(s) = \sum f_j(s)$, with $f_j(s) > 0$
- Assume that each $f_j(s)$ can be efficiently and easily integrated with a **single pdf** $g_j(s)$

$$I = \sum_{j} \int f_j(s) ds = \sum_{j} \int g_j(s) w_j(s) ds$$

Application to physics: cross-section calculation

$$\sigma = \int d\vec{\phi} \, |A_{Tot}(\vec{\phi})|^2 = \int d\vec{\phi} \, |\sum_j A_j(\vec{\phi})|^2$$

In this case, a natural decomposition arises from the physical content of the process

$$f_j = |A_j|^2 \frac{|A_{Tot}|^2}{\sum_i |A_i|^2}$$

- The peak structure of each f_j is the same as of the single squared amplitude $|A_j|^2$
- Finding the suitable channel g_j is straightforward, since it can be derived from the propagator structure of the corresponding Feynman diagram.

Example: QCD 2 \rightarrow 2 production

Each diagram contributes to the total amplitude with a very different analytic structure (poles)

But:

Each diagram individually is "easy" to integrate trough a MC average and a single channel approach

Application to physics: events generation

Up to here, only considered Monte Carlo as a numerical integration method. If function being integrated is a probability density (positive definite), trivial to convert it to a simulation of physical process, i.e. an event generator.

"Hit or miss" method:

- Generate s randomly, according to g
 - \rightarrow g is "simple", use inversion technique
- Compute f(s) and g(s)
- Generate y randomly, uniformly in $[0, f_{MAX}/g_{MAX}]$
- If f(s)>y g(s) accept event, else reject it.

Application to physics: events generation

Up to here, only considered Monte Carlo as a numerical integration method. If function being integrated is a probability density (positive definite), trivial to convert it to a simulation of physical process, i.e. an event generator.

"Hit or miss" method:

- Generate s randomly, according to g
 - \rightarrow g is "simple", use inversion technique
- Compute f(s) and g(s)
- Generate y randomly, uniformly in $[0, f_{MAX}/g_{MAX}]$
- If f(s)>y g(s) accept event, else reject it.

These operations are already performed during MC integration!

MadGraph/MadEvent: use

Example: $e^+ e^- \rightarrow \mu^+ \mu^- @ 20+20 \text{ GeV}$

MadGraph/MadEvent: use

Example: $e^+ e^- \rightarrow \mu^+ \mu^- @ 20+20 \text{ GeV}$

MadGraph/MadEvent: use

Example: $e^+ e^- \rightarrow \mu^+ \mu^- @ 20+20 \text{ GeV}$

$\begin{array}{c} \textbf{MadGraph}/\textbf{MadGraph} & \textbf{MadEvent: use} \\ \textbf{Example: } e^+ e^- \rightarrow \mu^+ \mu^- @ 20+20 \text{ GeV} \\ \hline \textbf{proc_card.dat} & \textbf{param_card.dat} & \textbf{run_card.dat} & \textbf{MadGraph} & \textbf{madEvent} & \textbf{Feynman diagrams} \\ \hline \textbf{MadGraph} & \textbf{MadEvent} & \textbf{Diagrams by MadGraph} & \textbf{et e-> mut mut} \\ \hline \textbf{Feyn. diagrams} & \textbf{Diagrams by MadGraph} & \textbf{et e-> mut mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} & \textbf{mut} \\ \hline \textbf{mut} & \textbf{mut} &$

2

mц

graph 1

Parton-level events

Amplitudes

ШU

graph 2

MadGraph/MadEvent: use

<LesHouchesEvents version="1.0"> <!--# optional information in completely free format, # except for the reserved endtag (see next line) <header> <!-- individually designed XML tags, in fancy XML style --> </header> <init> compulsory initialization information # optional initialization information </init> <event> compulsory event information # optional event information </event> (further <event> ... </event> blocks, one for each event) </LesHouchesEvents>

Les-Houches format:

XML-based data format, common in HEP, derived from Fortran common-blocks standards defined in Les Houches accords

ROOT format:

TTree with 4 momenta of external particles (1 entry per event)

MadGraph/MadEvent: use

Les-Houches format:

XML-based data format, common in HEP, derived from Fortran common-blocks standards defined in Les Houches accords

ROOT format:

TTree with 4 momenta of external particles (1 entry per event)

Outline

- Introduction: light dark matter search at beam-dump experiments
 - Physics case
 - MC tools: scope and requirements

• Event generator for the signal

- Computation strategy
- Software implementation
 - DM production: MadGraph/MadEvent
 - DM interaction
 - Detector response: GEMC
- Event generator for the beam-related background
 - Requirements-computational issues
 - Brute-force approach
 - MCNP approach

Process: $\chi + e \rightarrow \chi + e / \chi + N \rightarrow \chi + N$ Goal:

- Compute the total number of events within the detector
- Generate final state 4-momenta according to $d\sigma$

Code: standalone C++ code (using ROOT libraries)

$$e^{-\phi_{\chi}(E_{\chi}, \Omega_{\chi})} \rightarrow Detector$$
Beam dump
Fiducial volume
Output: must compute $N = \int_{V_F} \frac{d\phi_{\chi}}{dE_{\chi}d\Omega_{\chi}} \frac{d\sigma_I(E_{\chi})}{dE_r} n_p dE_{\chi} d\Omega_{\chi} dE_r$

Process: $\chi + e \rightarrow \chi + e / \chi + N \rightarrow \chi + N$ Goal:

- Compute the total number of events within the detector
- Generate final state 4-momenta according to $d\sigma$

Code: standalone C++ code (using ROOT libraries)

Process: $\chi + e \rightarrow \chi + e / \chi + N \rightarrow \chi + N$ Goal:

- Compute the total number of events within the detector
- Generate final state 4-momenta according to $d\sigma$

Code: standalone C++ code (using ROOT libraries)

Process: $\chi + e \rightarrow \chi + e / \chi + N \rightarrow \chi + N$ Goal:

- Compute the total number of events within the detector
- Generate final state 4-momenta according to $d\sigma$

Code: standalone C++ code (using ROOT libraries)

e
$$\phi_{\chi}(E_{\chi}, \Omega_{\chi})$$
 Detector
Beam dump
Fiducial volume
Output: must compute $N = \int_{V_D} \frac{d\phi_{\chi}}{dE_{\chi}d\Omega_{\chi}} \frac{d\sigma_I(E_{\chi})}{dE_r} n_p dE_{\chi} d\Omega_{\chi} dE_r$
Scatter centers
density

Process: $\chi + e \rightarrow \chi + e / \chi + N \rightarrow \chi + N$

Cross-section (electron scattering case):

$$\frac{d\sigma}{dE_e} = 4\pi\varepsilon^2 \alpha \alpha' m_e \frac{4m_e m_{\chi}^2 E_e + [m_{\chi}^2 + m_e E_{\chi}]^2}{(m_A^2 + 2m_e E_e)^2 (m_{\chi}^2 + 2m_e E_0)^2}$$

- Smooth 1-dimensional function, easy to integrate and to sample. We use standard ROOT methods for this (TF1)
- Function depends on **incoming** χ energy E_0
 - To avoid function integration event by event, bin in E₀ before generating events (from 0 to E_{beam})
 - For each event, use the cross-section computed at the bin center

Decouple the χ interaction simulation from the detector response simulation and use Geant4 for the latter.

$$N = \int_{V_F} \frac{d\phi_{\chi}}{dE_{\chi} d\Omega_{\chi}} \frac{d\sigma_I(E_{\chi})}{dE_r} n_p dE_{\chi} d\Omega_{\chi} dE_r$$

- Define a simple fiducial volume in the $E_{\chi}^{}-\Omega_{\chi}^{}$ space, with $V_{_F}^{}>V_{_D}^{}$
- Use $\boldsymbol{V}_{_{\boldsymbol{F}}}$ to calculate $\boldsymbol{N}_{_{\boldsymbol{F}}}$ and to generate events
 - Since $L_{\chi} \gg L_{D_{\chi}}$ generate events uniformly: for each χ generate the interaction vertex uniformly along the part of the trajectory that lies within V_F
 - The MonteCarlo simulation is designed to handle the cases with a proton generated in V_F but not in V_D
- Compute the "real" detector response as: $N_D = N_F \cdot \epsilon$
 - ϵ calculated trough Geant4 detector simulation

Outline

- Introduction: light dark matter search at beam-dump experiments
 - Physics case
 - MC tools: scope and requirements

• Event generator for the signal

- Computation strategy
- Software implementation
 - DM production: MadGraph/MadEvent
 - DM interaction
 - Detector response: GEMC
- Event generator for the beam-related background
 - Requirements-computational issues
 - Brute-force approach
 - MCNP approach

Event generator for the signal: detector response simulation

Process: e⁻ / protons interaction with detector material **Goal:**

- Compute the overall detector efficiency
- Simulate the detector response, in terms of measured observables (deposited energy / hit multiplicity / ...)

Input from recoil generator: scattered protons / electrons four-momenta and production vertexes

Code: GEant4 Monte-Carlo (GEMC) software, developed by M. Ungaro @ Jefferson Lab

GEMC

GEMC is an application based on Geant4 libraries to simulate the passage of particles through matters

Why? GEANT4 is a C++ Library \rightarrow

• Does require some programming language experience

• Write geometry in the code

• Incorporate **Digitization**

• Implement Input and Output

• Write response function in the code

• Implement Magnetic fields in the code

- Does require some C++ knowledge
- OO Programming skills much preferable

pX = 30, pY = 40, pZ = 60

by giving the box a name and its half-lengths along the X, Y and Z axis:

PX half length in X PY half length in Y PZ half length in Z

Do this for hundreds (thousands) of detector elements

GEMC

Users (physicists) aren't necessarily the best programmers (not applicable to this audience!): build a framework that decouples the content (geometry / fields / digitization) from the code.

GEMC wants to solve these problems:

- Users should have to deal ONLY with geometry, fields, response function parameters NOT how they interface with Geant4 core code.
- All parameters should be in a database (with reconstruction, calibration, visualization).

The **same** GEMC executable is used for all simulations: only input configuration changes.

How it works (geometry/materials):

- User specify materials and geometry (volumes / surfaces) in a perl script, using GEANT4 C++ classes methods (default G4 materials are available).
- Materials and geometry are uploaded to a database (or to a local txt file)
- GEMC executable loads the geometry from the selected data-source and automatically constructs the detector.

Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped)

Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped)

Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped)

Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped)

Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped)

Detector:

```
sub build_simple_paddle
{
    my %detector = init_det();
    $detector{"name"} = "paddle_1";
    $detector{"mother"} = "root";
    $detector{"description"} = "Example of paddle";
    $detector{"description"} = "0*cm 0*cm 30*cm";[]
    $detector{"rotation"} = "0*deg 0*deg 0*deg";
    $detector{"color"} = "339999";
    $detector{"type"} = "Box";
    $detector{"dimensions"} = "2*cm 2*cm 8*cm";
    $detector{"visible"} = 1;
    $detector{"style"} = 1;
    print_det(\%configuration, \%detector);
}
```

Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped) **Result:**

A simple geometry was defined without necessity to compile any code: user can just focus on the simulation problem \rightarrow **GEMC handles the coding.**

GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup before a full MC run is started in batch mode.

Detector browser

GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup before a full MC run is started in batch mode.

Built-in event generator

	gemc 2.2	_ 🗆 X	gemc
N. Events: 1	📄 🖻 Run 🔀 Cycle 🔲 Stop	🛛 🕅 Exit	
Generato Camera Octoor Detector Infos G4Dialoc G4Dialoc Signals	Generator Beam 1 Beam 2 Momentum: Particle Type: e. \$\$\$\$\$\$\$\$ p: 4 ± 0 GeV \$\$\$\$\$\$\$\$\$ p: 4 ± 0 GeV \$\$\$\$\$\$\$\$\$\$ p: 4 ± 0 GeV \$\$\$\$\$\$\$\$\$\$ p: 4 ± 0 GeV \$\$\$\$\$\$\$\$\$\$\$ p: 4 ± 0 GeV \$\$\$\$\$\$\$\$\$\$\$ 0: 20 ± 0 deg \$\$\$\$\$\$\$\$\$\$\$\$ vX: 0 Δr: 0 v vY: 0 Δz: 0 v vZ: 0 Units: cm \$\$\$\$ 0		

GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup before a full MC run is started in batch mode.

Hit-display

	gemc 2.2	_ 🗆 X	gemc
N. Events: 1	📄 🕞 Run 🛃 Cycle 🔲 Stop	🛛 🗷 Exit	
	Generator Beam 1 Beam 2		
	Momentum:		
Generator	Particle Type: e- 🗘		
6	p: 4 ± 0 GeV ≎		
Camera	θ: 20 ± 0 deg ≎		
	φ: 10 ± 0 deg ≎		
	Vertex		
Detector	vX: 0 Δr: 0		
	vΥ: 0 Δz: 0		
Infos	vZ: 0 Units: cm 😂		
$\mathbf{\nabla}$			
G4Dialog			
Signals			

GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup before a full MC run is started in batch mode.

Hit history: time chart

63

Outline

- Introduction: light dark matter search at beam-dump experiments
 - Physics case
 - MC tools: scope and requirements
- Event generator for the signal
 - Computation strategy
 - Software implementation
 - DM production: MadGraph/MadEvent
 - DM interaction
 - Detector response: GEMC
- Event generator for the beam-related background
 - Requirements-computational issues
 - Brute-force approach
 - MCNP approach

Beam-related backgrounds simulation

Goal: estimate backgrounds created by beam interaction with the dump via MC simulations.

- Determine the expected number of background events per EOT
- Study the different contributions

BDX run conditions:

- 11 GeV electrons impinging on the beam dump
- 10²² EOT
- 100 μ A electron beam on dump for 6 months running

Computational challenges and issues:

- Computing limitations:
 - Combination of very large number of incoming particles and very massive absorbers makes full-luminosity simulations prohibitive
 - Extrapolation over several order of magnitudes needed
- Physics issues:
 - Accurate modeling of physics interaction from GeV to eV, including low energy nuclear reactions and neutron transport

Beam-related backgrounds simulation

Brute-force approach:

- Model beam dump geometry and materials
- Use Geant4 to simulate the interaction of the electrons in the dump
- Determine fluxes of particles exiting from the dump and reaching the detector location

GEANT4 setup: simulation based on GEMC (GEant4 Monte Carlo):

- Simulates passage of particles through matter based on Geant4 libraries
- Simulation parameters (geometry, materials fields, etc.) defined in databases (MYSQL, TXT, GDML, ...)
- Same GEMC executable is used for different detectors and experiments
- Can simulate beam structure (beam bunches, repetition rate, ...)

Use high precision physics lists (QGSP_BERT_HP + EM_HP)

Beam-related backgrounds simulation: geometry

Beam-related backgrounds simulation: computing

Computing resources usage:

- 10000 EOT @ 11 GeV \rightarrow 16 ps of beam on target at 100 μ A
- ~ 3000 s computing time on an Intel Xeon (E5530), 2.4 GHz
- 1 month of simulations on a 200 cores farm (~3600 HepSpec2006), equivalent to 2·10⁹ EOT (3.2 μs beam on target at 100 μA)
- Results would need to be extrapolated by more than 12-13 orders of magnitude to reach the desired experiment luminosity

HepSpec2006: new HEP-wide benchmark for measuring CPU performance. Developed by the HEPiX Benchmarking Working Group: http://w3.hepix.org/benchmarks/doku.php/

Beam-related backgrounds simulation: brute force approach

Particle fluxes estimated at the detector location:

- Only particles observed are neutrinos and very low energy gammas (E<eV)
- Neutrinos originates from pion and muons decay at rest within the main iron absorber: isotropic process
 - Energy range: 0-60 MeV
 - Flux scales with primary beam energy and square of dump-detector distance.
- No other particles are observed

Beam-related backgrounds simulation: full luminosity

How to obtain full-luminosity background estimates:

- Estimated non-zero neutrino rate can be extrapolated "safely" to full luminosity
- Zero rates observed for neutrons and gammas...
 - This only allows to set an upper limit
- Increase of computing power or efficiency can gain 2-3 orders of magnitude, but cannot reach 10²² EOT

A different approach is required:

- Rely on GEANT4 for treatment of high energy (GeV to MeV) interactions
- Sample particle fluxes at different depths within the dump absorbers to study the flux profile and find non-zero values
- Extrapolate non-zero fluxes to full luminosity based on flux profile
- Validate results for low energy neutrons/gamma with different simulation tools (MCNP) and using variance reduction techniques

Flux detector:

- "Ideal" 2D-detector
- For **all** passing particles it forces an hit, recording exactly:
 - Hit position
 - Particle id
 - Particle 4- momentum

Beam-related backgrounds simulation: full luminosity

Flux-profile sampling:

- Sampled particles crossing XY planes at different position along the beam direction with "flux" detectors.
- Checked particle types and energy spectra as a function of depth within the dump absorbers.

Beam-related backgrounds simulation: full luminosity

- Overall particle flux is dominated by gamma and neutrons for the first 2 m and by neutrinos at larger depths.
- Gamma:
 - Flux reduction of factor 3600 in 2.2 m of iron
 - Gamma detected after the iron absorber < keV energies
- Neutrons:
 - Attenuation of factor ~1700 in 2.2 m iron
 - Attenuation of factor ~4.3 in 10 cm of concrete
 - < 1 neutron @ 10^{22} EOT after ~3.5 m of concrete

Residual flux dominated by thermal neutrons: validation with specific tools is required
Outline

- Introduction: light dark matter search at beam-dump experiments
 - Physics case
 - MC tools: scope and requirements
- Event generator for the signal
 - Computation strategy
 - Software implementation
 - DM production: MadGraph/MadEvent
 - DM interaction
 - Detector response: GEMC

• Event generator for the beam-related background

- Requirements-computational issues
- Brute-force approach
- MCNP approach

Monte Carlo N-Particle (MCNP)

General Transport Code developed at Los Alamos: more than 70 years of history!

Monte Carlo transport of particles

- MCNP5: neutrons, photons, electrons
- MCNPX: focus on high-energy physics
- MCNP6: merged code.

Features:

- 3D general geometry
- PC, Mac, Linux, Unix, Sun
- Parallel (MPI + threads)
- 350k+ lines of Fortran code
- Extensive verification/validation

- 400+ person/years development
- 10k+ users
- 15k+ citations
- Distributed by RSICC code center
- Export controlled

[MCNP: https://mcnp.lanl.gov/]

Monte Carlo N-Particle (MCNP): applications

MCNP is traditionally used (not exclusively!) in nuclear-physics fields

- Nuclear critical safety
- Radiation shielding
- Detector design and analysis
- Nuclear Well logging
- Personnel dosimetry
- Health physics
- Medical physics and radiotherapy

- Accelerator target design
- Fission and fusion reactor design
- Waste storage/disposal
- Radiography
- Aerospace applications
- Decontamination and decommissioning
- Nuclear Safeguards

[MCNP: https://mcnp.lanl.gov/]

Monte Carlo N-Particle (MCNP): physics

MCNP is able to transport 37 different particle types.

- MCNP is physics rich try to use best data, models, and theory
- Neutron, proton, electron and photon transport below a certain energy are based on data libraries by default

MCNP6 particle types, energy ranges and interaction physics.

[J.T. Goorley et al., "Initial MCNP6 Release Overview"]

Beam-related backgrounds simulation: MCNP

Neutron flux in iron or concrete absorbers: computation strategy

- Use as initial (high-energy) neutron spectrum that from GEANT4 simulations
- Use MCNP to transport neutrons and photons down to thermal regime

Results:

- Large attenuation of neutron flux in concrete is confirmed
- Actual value strongly depends on neutron energy and dump structure

Beam-related backgrounds simulation: MCNP

First results for neutron rates with full dump geometry

- Initial neutron spectrum in iron absorber from G4 simulations
- Only thermal neutrons are exiting from the concrete enclosure
- Neutron flux attenuated by factor ~2.5 every 10 cm
- < 1 neutron @ 10²² EOT after 3 m of concrete

Thanks for your attention!

Hints for A' existence: astrophysics

Cosmic positron fraction excess (AMS, FERMI, PAMELA)

- This anomaly could be explained by dark matter decaying or annihilating in A', which then decays to e⁺ e⁻
- No excess measured in anti-proton fraction: light A' ($M_{A'} < 2 \text{ GeV}$)

Possible reach

Reach for a "benchmark" beam-dump experiment at an electron machine:

- 10²² EOT, 12 GeV / 125 GeV (ILC)
- 1 year of run
- 1 m³ detector, ρ =1 g/cm³, placed 20 m from the beam dump

In the low-mass region ($m_{\chi} < 1 \text{ GeV}$), the reach of a beam-dump like experiment is O(100-1000) better than a traditional direct-search experiment.

BDX contribution to the g-2 "puzzle"

MiniBooNE

MiniBooNE DM search:

- 8 GeV protons on a 50m beam dump
- Detector ~ 500 m after the beam dump
 - 800 t mineral oil, 1280 PMTs

MiniBooNE test run (2013):

- 0.4 10²⁰ protons on target
- "Off-axis" configuration to reduce vbackground (reduction factor \sim 42)
- Selection cuts for DM events:
 - Timing (χ can travel slower than c)
 - Energy (different χ – ν energy deposition)

MiniBooNE 2014 proposal: 2 10²⁰ PoT

Preliminary, M_{Λ} = 300 MeV, α '=0.1

First generation fixed target experiments: beam dump

Beam dump experiments for A' search:

- e⁻ beam incident on thick target
- A' is produce in a process similar to ordinary Bremsstrahlung
- A', emitted forward at small angle, carries most of the beam energy and decays before the detector
- Decay products are measured in the detector

