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Outline
● Introduction: light dark matter search at beam-dump experiments
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● MC tools: scope and requirements

● Event generator for the signal
● Computation strategy
● Software implementation

● DM production: MadGraph/MadEvent
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How to search for new physics beyond the SM

Dark matter (DM)
direct search mainly
focused in the mass
region 10 GeV -10 TeV

● WI M P : w e a k l y 
interacting massive 
particles with weak scale 
mass provides the correct 
DM relic abundance

• No signals seen yet

DM detection by measuring the (heavy) nucleus recoil of slow moving cosmological DM
→  no experimental sensitivity to light DM (<1 GeV)
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How to search for new physics beyond the SM

Accelerators-based DM search is
covering a similar mass region 
but can extend the reach outside 
the classical DM hunting 
territory

Many theoretical suggestions and
experimental attempts to extend the
search region to:

● Higher mass (> 10 TeV):
LHC, Rare decays, …



5

How to search for new physics beyond the SM

Accelerators-based DM search is
covering a similar mass region 
but can extend the reach outside 
the classical DM hunting 
territory

Many theoretical suggestions and
experimental attempts to extend the
search region to:

● Higher mass (> 10 TeV):
LHC, Rare decays, …

● Lower Mass (<10 GeV)
MiniBoone@FNAL, SPS@CERN,
PADME@LNF, BDX@JLab

Main topic of this talk
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Light dark matter model: dark  photon portal

[Holdom, Phys. Lett. B166, 1986]

● Under A' interaction, ordinary charged matter acquires a new charge e:

● Consider an additional U(1) hidden symmetry in nature: this 
leads to a kinetic mixing between the photon and the new gauge 
boson A'

● General hypothesis to incorporate new physics in the SM: the A' 
acts as a “portal” between the SM and the new sector

New interaction term:

 is a huge mass scale particle 
(M~1EeV) coupling to both SM and HS
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Hints for A' existence: muon anomalous magnetic moment
● Magnetic dipole moment of charged particle:

Can be measured very accurately● SM tree-level prediction for a Dirac particle:

● Higher-order contributions:

QED Weak Hadronic
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Hints for A' existence: muon anomalous magnetic moment

~ 3 deviation experiment – SM prediction
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A dark photon with mass in the 10-100 MeV range could explain the anomaly

Hints for A' existence: muon anomalous magnetic moment

A dark photon in this region may 
explain the observed discrepancy.

[Pospelov 0811.1030]
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A'

A'

l   - l  +

 

Dark photons and dark sector

4 parameters: 

Minimal model:

● A' interacts with trough kinetic mixing
● Dark sector particle  interacts with A'

A' production: A' decay:

● Minimal scenario

●

●

First scenario: only SM decays

An extensive experimental effort is currently 
ongoing to search for visible dark-photon decays
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Visible A'  decay: current searches and constrains
Any -rich environment is suitable for A' searches.

● Fixed target with e- beam
●  JLab, Mainz

● Fixed target with p beam
●  Fermilab

● Annihilation
●  BABAR, BELLE, KLOE

● Meson decay
●  KLOE, BES-3, WASA-COSY

So far, no positive A' evidences: 
limits in the parameters space

[For a complete review, see: http://www.bnl.gov/di2014/ ]
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A'

A'

l   - l  +

 

Dark photons and dark matter

4 parameters: 

Model:

● A' interacts with trough kinetic mixing
● Dark sector particle  interacts with A'

A' production: A' decay:

Second scenario:  SM + hidden coupling

+

●

●

●
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Beam dump experiments with e­ beam
How to access the A' invisible decay: direct detection in a 
two-step process.

● Fixed-target: A' produced in the dump, decays promptly 
to invisible 

● Detector: Neutral-current scattering of  trough A' 
exchange, detect recoil. Different signals depending on the 
interaction (e- scattering, coherent nuclear, quasi-elastic,..)

[arXiv:1307.6554]

A' yield:

  cross-section:

Number of events:
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Accelerator requirements
● Beam current: critical. The experimental sensitivity scales linearly with this parameter.

● Beam energy: 

● A' production and – matter interaction cross-sections increase smoothly with the beam energy.
● At low energy (E

0 
~ m

A
), there is a further signal enhancement with E

0
 due to increased detector 

acceptance ( beam more focused forward). 

● Beam structure:

● A pulsed beam permits to reject uncorrelated backgrounds by making a time coincidence between 
the beam RF signal and an hit in the detector

Continuous beam: detector time resolution is a 
mandatory requirement.

 
T

Detector Time Res .          
              ~ 0.1-0.2 ns

Beam structure

Pulsed beam: detector time resolution is not critical, if 
smaller than the bunch length.

Beam structure

1/f


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x  ­ SM (detector) interaction
1) Quasi-elastic scattering on nucleons

The  scatters quasi-elastically on a bounded nucleon in 
the detector producing a visible recoil (~ MeV)

Experimental requirements:

● Sensitivity to ~ MeV nucleon recoil (low detection 
thresholds)

● Low energy backgrounds rejection capability

2) Elastic scattering on electrons

The  scatters elastically on an electron in the 
detector producing a well visible recoil ( ~ GeV)

Experimental requirements:

● Sensitivity to ~GeV electrons (EM showers)
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Detector design and requirements

16

Veto for charged

Segmented 
Detector

Passive shielding

Signal detection:

● High density
● Low threshold for nucleon recoil detection (~ MeV)
● EM showers detection capability

Background rejection / suppression:
● Segmentation 
● Active veto
● Passive shielding
● Good time resolution

Inner detector:
● Single optical module (possibly made of multiple opt. channels with 

single readout)
● Matrix of modules aligned wrt the  beam

 Beam

Scintillation-based detector
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Backgrounds
Beam-related backgrounds:

1) Prompt backgrounds ( /fast n):
● Can't be reject with the detector-beam RF time coincidence
● Shielding is required to reduce /fast n rate on the detector

2) Low energy / thermal n:
● Can apply detector-beam RF time coincidence
● Very low energy hits in the detector: cut with threshold. 

3) Neutrinos:
● Neutrinos are emitted from at-rest processes:

●  → 
●  → e+

● Isotropic flux
● Can't be reduced trough shielding
● Further suppression:

● Energy threshold 
● Beam RF-detector signal coincidence 

(not all processes are prompt)
● Off-axis measurement







all


e
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Backgrounds
Beam-unrelated backgrounds: all reduced by the beam RF – detector time coincidence

1) Cosmic neutrinos 
● Considering flux, interaction cross-sections, and thresholds the contribution is negligible. 

2) Cosmic muons
● Different background contributions (crossing/stopping/decaying/..).
● Reduced trough shielding + VETO around the detector + threshold + signal topology (different 

from -p and -e interactions).

3) Cosmic neutrons 
● High-energy neutrons can penetrate the shielding and interact inside the detector, mimicking a 

-N interaction.
● Reduced trough shielding + VETO around the detector + threshold.



 

The ``BeamDump Experiment'' (BDX) is a recently 
proposed program at Jefferson Laboratory to search 
for low-mass dark-matter.

Jefferson Lab accelerator:

● Electron beam with tunable energy, up to 12 GeV
● Continuous beam, 2ns bunches
● I

beam
 < 800 nA @ Hall B

● I
beam 

< 100 A @ Hall A, C

The BDX experiment at Jefferson Laboratory

[BDX LOI: arXiv:1406.3028]

BDX detector design is currently being optimized

● Modular design, overall volume  ~ 2 m3

● Each module:
●  Matrix of CsI crystals
● Equipped with 2 veto layers, plastic-scintillator based

● Compact detector front face (~ 50x50 cm2) 
● Detector placed ~ 20 m after the beam-dump
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BDX experiment: reach

Elastic - e- scattering: 
● Almost background-free search.

Elastic - p scattering:

● Cosmogenic background is the main 
limiting factor. 

● Beam-related background is negligible

BDX accumulated charge: 1022 EOT

● Beam current: 100 A (Hall-A / 
Hall – C option)

● Accelerator availability: 50%
● Run time: 1 calendar year
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MonteCarlo simulations: objectives
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Outline
● Introduction: light dark matter search at beam-dump experiments

● Physics case
● MC tools: scope and requirements

● Event generator for the signal
● Computation strategy
● Software implementation

● DM production: MadGraph/MadEvent
● DM interaction
● Detector response: GEMC

● Event generator for the beam-related background
● Requirements-computational issues
● Brute-force approach
● MCNP approach
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Event generator for the signal 
Strategy: factorize the event generation, as in the real physical process

● -beam generator: simulate the interaction of the primary e- beam in the dump and 
produce the secondary  beam, with absolute normalization per EOT.

● Recoils generator: given the secondary -beam, produce the scattered particles in the 
detector: e- and nucleons.

● Detector simulation: given the scattered e- and nucleons, simulate the detector 
response.
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● Brute-force approach
● MCNP approach



25

Event generator for the signal: ­ beam 
Process: e- + Z → e- + Z +  + 
Goal:
●  Compute the total flux per electron on target
●  Generate final state 4-momenta according to d 

Code: modified version of MadGraph/MadEvent

MadGraph/MadEvent: very popular tool in HEP, to compute tree-level cross-sections and 
generate events of a user-specified process. Models: SM + MSSM + HEFT + user-defined.

Written in Fortran77 + sch + Perl.

MadGraph/MadEvent provides:
 

● List all contributing sub processes
● Feynman diagrams for each sub process
● Cross section
● Unweighted events, Les-Houches ready (ROOT format is available trough 

ExRootAnalysis)
● Interfaces for PYTHIA / PGS available

[MadGraph: arXiv:1405.0301, http://madgraph.hep.uiuc.edu]
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MadGraph/MadEvent : how it works
Goal: use MC methods to compute

Method: MC-average
● Extract N random numbers s

i 
uniformly in [a,b]

● Compute f(s
i
)

● Take the average
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MadGraph/MadEvent : how it works
Goal: use MC methods to compute

Method: MC-average
● Extract N random numbers s

i 
uniformly in [a,b]

● Compute f(s
i
)

● Take the average

Example:
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MadGraph/MadEvent : how it works
Can we do better? Yes!

Use a different g(s) to extract random numbers s
i
, to reduce variance: select g(s) as 

similar as possible to f(s), in term of “peaks”. Can't use f itself, since I is required to 
extract random numbers (g must be normalized to 1)
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MadGraph/MadEvent : how it works

Use a different g(s) to extract random numbers s
i
, to reduce variance: select g(s) as 

similar as possible to f(s), in term of “peaks”. Can't use f itself, since I is required to 
extract random numbers (g must be normalized to 1)

Can we do better? Yes!
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MadGraph/MadEvent : how it works

Multi-channel approach:

● Each g
j
 (“channel”) is normalized to 1.

● 
j
 are “weights” (sum normalized to 1)

● g is a PDF for s, and can be used to extract random numbers
● <w> does not depend on the choice of 

j
, but Var does 

Carefully select g to minimize Var

Use optimization techniques for 
j
 during MC calculation.

Caveats:

● The computation of g(s) always requires the same time, also if one of the  is small, 
and the corresponding contribution negligible

● Weights may be correlated, and the optimization is not trivial
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MadGraph/MadEvent : how it works

Application to physics: cross-section calculation
 

In this case, a natural decomposition arises from the physical content of the process

● The peak structure of each f
j
 is the same as of the single 

squared amplitude |A
j
|2

● Finding the suitable channel g
j 
is straightforward, since it can 

be derived from the propagator structure of the corresponding 
Feynman diagram.

Special scenario:

● Assume that f(s) can be written as:     , with f
j
(s) > 0

● Assume that each f
j
(s) can be efficiently and easily integrated with a single pdf g

j
(s)
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MadGraph/MadEvent : how it works
Example: QCD 2 → 2 production

Each diagram contributes to the total amplitude with a very different analytic structure (poles)

But:

Each diagram individually is “easy” to integrate trough a MC average and a single channel 
approach
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MadGraph/MadEvent : how it works
Application to physics: events generation

Up to here, only considered Monte Carlo as a numerical integration method.
If function being integrated is a probability density (positive definite), trivial to convert it to a 
simulation of physical process, i.e. an event generator.

“Hit or miss” method:

 

f(s)

g(s)

● Generate s randomly, according to g
● → g is “simple”, use inversion technique

● Compute f(s) and g(s)
● Generate y randomly, uniformly in [0,f

MAX 
/g 

MAX
]

● If f(s)>y g(s) accept event, else reject it.
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MadGraph/MadEvent : how it works
Application to physics: events generation

Up to here, only considered Monte Carlo as a numerical integration method.
If function being integrated is a probability density (positive definite), trivial to convert it to a 
simulation of physical process, i.e. an event generator.

“Hit or miss” method:

 

f(s)

g(s)

These operations are already performed 
during MC integration!

● Generate s randomly, according to g
● → g is “simple”, use inversion technique

● Compute f(s) and g(s)
● Generate y randomly, uniformly in [0,f

MAX 
/g 

MAX
]

● If f(s)>y g(s) accept event, else reject it.
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MadGraph/MadEvent: use 
Example: e e- → + - @ 20+20 GeV
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MadGraph/MadEvent: use 

proc_card.dat : specify the process
(external particles + maximum number of 
couplings)

Example: e e- → + - @ 20+20 GeV
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MadGraph/MadEvent: use 

param_card.dat : specify model parameters
(particle masses and widths / couplings)

Example: e e- → + - @ 20+20 GeV
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MadGraph/MadEvent: use 

run_card.dat : specify run parameters
(beam energy / polarization / PDFs / cuts )

Example: e e- → + - @ 20+20 GeV
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MadGraph/MadEvent: use 

MadGraph output: 
● Feynman diagrams 
● Corresponding amplitudes

Example: e e- → + - @ 20+20 GeV
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MadGraph/MadEvent: use 

MadEvent output: 
● Total cross-section (58.3 + 0.1) pb
● Events (Les-Houches/ROOT format)

Example: e e- → + - @ 20+20 GeV

Les-Houches format:

XML-based data format, common in HEP, 
derived from Fortran common-blocks 
standards defined in Les Houches accords

ROOT format: 
TTree with 4 momenta of external particles 
(1 entry per event)
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MadGraph/MadEvent: use 

MadEvent output: 
● Total cross-section (58.3 + 0.1) pb
● Events (Les-Houches/ROOT format)

Example: e e- → + - @ 20+20 GeV

Les-Houches format:

XML-based data format, common in HEP, 
derived from Fortran common-blocks 
standards defined in Les Houches accords

ROOT format: 
TTree with 4 momenta of external particles 
(1 entry per event)
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MadGraph/MadEvent: use

MadEvent output: 
● Total cross-section (58.3 + 0.1) pb
● Events (Les-Houches/ROOT format)

Example: e e- → + - @ 20+20 GeV

Les-Houches format:

XML-based data format, common in HEP, 
derived from Fortran common-blocks 
standards defined in Les Houches accords

ROOT format: 
TTree with 4 momenta of external particles 
(1 entry per event)
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Outline
● Introduction: light dark matter search at beam-dump experiments

● Physics case
● MC tools: scope and requirements

● Event generator for the signal
● Computation strategy
● Software implementation

● DM production: MadGraph/MadEvent
● DM interaction
● Detector response: GEMC

● Event generator for the beam-related background
● Requirements-computational issues
● Brute-force approach
● MCNP approach
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Event generator for the signal: recoil
Process:   + e → e /  + N → N 
Goal:
●  Compute the total number of events within the detector
●  Generate final state 4-momenta according to d

Code: standalone C++ code (using ROOT libraries)

Input from -beam generator: flux as a function of energy and angle per EOT 



Output: must compute
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Event generator for the signal: recoil
Process:   + e → e /  + N → N 
Goal:
●  Compute the total number of events within the detector
●  Generate final state 4-momenta according to d

Code: standalone C++ code (using ROOT libraries)

Input from -beam generator: flux as a function of energy and angle per EOT 



Output: must compute

 flux
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Event generator for the signal: recoil
Process:   + e → e /  + N → N 
Goal:
●  Compute the total number of events within the detector
●  Generate final state 4-momenta according to d

Code: standalone C++ code (using ROOT libraries)

Input from -beam generator: flux as a function of energy and angle per EOT 



Output: must compute

 interaction
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Event generator for the signal: recoil
Process:   + e → e /  + N → N 
Goal:
●  Compute the total number of events within the detector
●  Generate final state 4-momenta according to d

Code: standalone C++ code (using ROOT libraries)

Input from -beam generator: flux as a function of energy and angle per EOT 

Output: must compute

Scatter centers 
density


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Event generator for the signal: recoil
Process:   + e → e /  + N → N
 
Cross-section (electron scattering case): 

M =   10 MeV

M
A  

=  50 MeV

    =  3.87 10-4


D  

 =  0.1

● Smooth 1-dimensional function, easy to 
integrate and to sample. We use standard 
ROOT methods for this (TF1)

● Function depends on incoming  energy E
0

● To avoid function integration event by 
event, bin in E

0
 before generating events 

(from 0 to E
beam

)
● For each event, use the cross-section 

computed at the bin center 
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Event generator for the signal: recoil
Decouple the   interaction simulation from the detector response simulation and use 
Geant4 for the latter. 

Detector

Fiducial volume

● Define a simple fiducial volume in the E  –   space, with 

V
F
 > V

D

● Use V
F
 to calculate N

F
 and to generate events

● Since L  ≫  L
D,

 generate events uniformly: for each  

generate the interaction vertex uniformly along the part of 
the trajectory that lies within V

F

● The MonteCarlo simulation is designed to handle the 
cases with a proton generated in V

F
 but not in V

D

● Compute the “real” detector response as: N
D
 = N

F
 ⋅ 

●  calculated trough Geant4 detector simulation 
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Outline
● Introduction: light dark matter search at beam-dump experiments

● Physics case
● MC tools: scope and requirements

● Event generator for the signal
● Computation strategy
● Software implementation

● DM production: MadGraph/MadEvent
● DM interaction
● Detector response: GEMC

● Event generator for the beam-related background
● Requirements-computational issues
● Brute-force approach
● MCNP approach
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Event generator for the signal: detector response simulation
Process:  e- / protons interaction with detector material
Goal:
●  Compute the overall detector efficiency 
●  Simulate the detector response, in terms of measured observables (deposited energy / hit 
multiplicity / ...)

Input from recoil generator: scattered protons / electrons four-momenta and production 
vertexes

Code: GEant4 Monte-Carlo (GEMC) software, developed by M. Ungaro @ Jefferson Lab

[GEMC: http://gemc.jlab.org]



52

GEMC
GEMC is an application based on Geant4 libraries to simulate the passage of particles 
through matters

Why? GEANT4 is a C++ Library →
● Does require some programming language experience
● Does require some C++ knowledge
● OO Programming skills much preferable

● Write geometry in the code
● Write response function in the code
● Implement Magnetic fields in the code
● Incorporate Digitization
● Implement Input and Output

Do this for hundreds (thousands) of detector elements
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GEMC
Users (physicists) aren’t necessarily the best programmers (not applicable to this audience!): 
build a framework that decouples the content (geometry / fields / digitization) from the code.

GEMC wants to solve these problems:

●  Users should have to deal ONLY with geometry, fields, response function parameters -
NOT how they interface with Geant4 core code.

●  All parameters should be in a database (with reconstruction, calibration,  visualization).

The same GEMC executable is used for all simulations: only input configuration changes.

How it works (geometry/materials):

● User specify materials and geometry (volumes / surfaces) in a perl script, using GEANT4 
C++ classes methods (default G4 materials are available).

● Materials and geometry are uploaded to a database (or to a local txt file)
● GEMC executable loads the geometry from the selected data-source and automatically 

constructs the detector. 
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GEMC basic example 
Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped) 

Target:

Volume name, mother 
volume, and description
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GEMC basic example 
Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped) 

Target:

Volume position wrt 
mother volume frame
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GEMC basic example 
Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped) 

Target:

Volume definition: 
G4solid name and default 
constructor parameters
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GEMC basic example 
Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped) 

Target:

Material definition: can be 
an embedded material or a 
user-defined one.
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GEMC basic example 
Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped) 

Detector:
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GEMC basic example 
Basic experimental setup: build a target (thin cylinder) and detector (parallelepiped) 

Result:

A simple geometry was defined without necessity to compile any code: user can 
just focus on the simulation problem → GEMC handles the coding.
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GEMC interface
GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup 
before a full MC run is started in batch mode. 

Detector browser
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GEMC interface 
GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup 
before a full MC run is started in batch mode. 

Built-in event generator
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GEMC interface 
GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup 
before a full MC run is started in batch mode. 

Hit-display



63

GEMC interface 
GEMC comes with a full GUI (based on Qt libraries), useful to debug MonteCarlo setup 
before a full MC run is started in batch mode. 

Hit history: time chart
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Beam­related backgrounds simulation 
Goal: estimate backgrounds created by beam interaction with the dump via MC simulations.

● Determine the expected number of background events per EOT
● Study the different contributions

BDX run conditions: 

● 11 GeV electrons impinging on the beam dump
● 1022 EOT 
● 100 A electron beam on dump for 6 months running

Computational challenges and issues:

● Computing limitations: 
● Combination of very large number of incoming particles and very massive absorbers 

makes full-luminosity simulations prohibitive 
● Extrapolation over several order of magnitudes needed

● Physics issues:
● Accurate modeling of physics interaction from GeV to eV, including low energy 

nuclear reactions and neutron transport
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Beam­related backgrounds simulation
Brute-force approach:

● Model beam dump geometry and materials
● Use Geant4 to simulate the interaction of the electrons in the dump
● Determine fluxes of particles exiting from the dump and reaching the detector location

GEANT4 setup: simulation based on GEMC (GEant4 Monte Carlo):

Use high precision physics lists (QGSP_BERT_HP + EM_HP)

● Simulates passage of particles through matter 
based on Geant4 libraries

● Simulation parameters (geometry, materials 
fields, etc.) defined in databases (MYSQL, 
TXT, GDML, ...)

● Same GEMC executable is used for different 
detectors and experiments

● Can simulate beam structure (beam bunches, 
repetition rate, …)
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Beam­related backgrounds simulation: geometry
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Computing resources usage:

● 10000 EOT @ 11 GeV → 16 ps of beam on target at 100 A
● ~ 3000 s computing time on an Intel Xeon (E5530), 2.4 GHz
● 1 month of simulations on a 200 cores farm (~3600 HepSpec2006), equivalent to          

2⋅109 EOT (3.2 s beam on target at 100 A)
● Results would need to be extrapolated by more than 12-13 orders of magnitude to reach 

the desired experiment luminosity

Beam­related backgrounds simulation: computing

HepSpec2006: new HEP-wide benchmark for measuring CPU performance. Developed by the HEPiX 
Benchmarking Working Group: http://w3.hepix.org/benchmarks/doku.php/
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Beam­related backgrounds simulation: brute force approach
Particle fluxes estimated at the detector location:

● Only particles observed are neutrinos and very low energy gammas (E<eV)

● Neutrinos originates from pion and muons decay at rest within the main iron 
absorber: isotropic process
●  Energy range: 0-60 MeV
●  Flux scales with primary beam energy and square of dump-detector distance.

● No other particles are observed
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Beam­related backgrounds simulation: full luminosity
How to obtain full-luminosity background estimates:

● Estimated non-zero neutrino rate can be extrapolated “safely” to full luminosity
● Zero rates observed for neutrons and gammas...

● This only allows to set an upper limit
● Increase of computing power or efficiency can gain 2-3 orders of magnitude, but cannot 

reach 1022 EOT

A different approach is required:

● Rely on GEANT4 for treatment of high energy (GeV to MeV) interactions
● Sample particle fluxes at different depths within the dump absorbers to study the flux 

profile and find non-zero values
● Extrapolate non-zero fluxes to full luminosity based on flux profile
● Validate results for low energy neutrons/gamma with different simulation tools (MCNP) 

and using variance reduction techniques

Flux detector: 
● “Ideal” 2D-detector 
● For all passing particles it forces an hit, recording exactly:

● Hit position
● Particle id
● Particle 4- momentum
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Beam­related backgrounds simulation: full luminosity
Flux-profile sampling:

● Sampled particles crossing XY planes at different position along the beam direction 
with “flux” detectors.

● Checked particle types and energy spectra as a function of depth within the dump 
absorbers.

All particles
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Beam­related backgrounds simulation: full luminosity
● Overall particle flux is dominated by gamma and neutrons 

for the first 2 m and by neutrinos at larger depths.

● Gamma:
● Flux reduction of factor 3600 in 2.2 m of iron
● Gamma detected after the iron absorber < keV energies

● Neutrons:
● Attenuation of factor ~1700 in 2.2 m iron
● Attenuation of factor ~4.3 in 10 cm of concrete
● < 1 neutron @ 1022 EOT after ~3.5 m of concrete

Residual flux dominated by 
thermal neutrons: 

validation with specific tools is 
required
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Outline
● Introduction: light dark matter search at beam-dump experiments

● Physics case
● MC tools: scope and requirements

● Event generator for the signal
● Computation strategy
● Software implementation

● DM production: MadGraph/MadEvent
● DM interaction
● Detector response: GEMC

● Event generator for the beam-related background
● Requirements-computational issues
● Brute-force approach
● MCNP approach
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Monte Carlo N­Particle (MCNP)
General Transport Code developed at Los Alamos: more than 70 years of history!

[MCNP: https://mcnp.lanl.gov/]

Monte Carlo transport of particles

● MCNP5: neutrons, photons, electrons
● MCNPX: focus on high-energy physics
● MCNP6: merged code.

Features:

● 3D general geometry
● PC, Mac, Linux, Unix, Sun 
● Parallel (MPI + threads)
● 350k+ lines of Fortran code
● Extensive verification/validation

● 400+ person/years development
● 10k+ users
● 15k+ citations
● Distributed by RSICC code center
● Export controlled
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Monte Carlo N­Particle (MCNP): applications

[MCNP: https://mcnp.lanl.gov/]

● Nuclear critical safety

● Radiation shielding

● Detector design and analysis

● Nuclear Well logging

● Personnel dosimetry

● Health physics

● Medical physics and radiotherapy

● Accelerator target design

● Fission and fusion reactor design

● Waste storage/disposal

● Radiography

● Aerospace applications

● Decontamination and decommissioning

● Nuclear Safeguards

MCNP is traditionally used (not exclusively!) in nuclear-physics fields
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Monte Carlo N­Particle (MCNP): physics
MCNP is able to transport 37 different particle types.

● MCNP is physics rich – try to use best data, models, and theory
● Neutron, proton, electron and photon transport below a certain energy are based on data 

libraries by default 

[J.T. Goorley et al., “Initial MCNP6 Release Overview”]

MCNP6 particle types, energy ranges and interaction physics.
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Beam­related backgrounds simulation: MCNP
Neutron flux in iron or concrete absorbers: computation strategy

● Use as initial (high-energy) neutron spectrum that from GEANT4 simulations
● Use MCNP to transport neutrons and photons down to thermal regime

Results:
● Large attenuation of neutron flux in concrete is confirmed
● Actual value strongly depends on neutron energy and dump structure

Input neutron 
spectrum from G4 
after 2 m of Iron
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Beam­related backgrounds simulation: MCNP
First results for neutron rates with full dump geometry

● Initial neutron spectrum in 
iron absorber from G4 
simulations

● Only thermal neutrons are 
exiting from the concrete 
enclosure

● Neutron flux attenuated by 
factor ~2.5 every 10 cm

● < 1 neutron @ 1022 EOT
after 3 m of concrete
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Thanks for your attention!
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Back up
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Hints for A' existence: astrophysics

[M. Aguilar et al. PRL 110 141102]

+

Cosmic positron fraction excess (AMS, FERMI, PAMELA)

● This anomaly could be explained by dark matter decaying or annihilating in A', 
which then decays to e+  e-

● No excess measured in anti-proton fraction: light A' (M
A'

 < ~ 2 GeV)



82

Possible reach

40 counts

103 counts

2 ∙ 104 counts∝


2

Reach for a “benchmark” beam-dump experiment at an electron machine:

● 1022 EOT, 12 GeV / 125 GeV (ILC)
● 1 year of run
● 1 m3 detector, =1 g/cm3, placed 20 m from the beam dump

(x10)

10 counts

In the low-mass region (m < 1 GeV), the reach of a beam-dump like experiment is 

O(100-1000) better than a traditional direct-search experiment.

For XENON10,


DM
 =  =  0.4 GeV/cm3 

[arXiv:1206.2644, 1307.6554]
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BDX contribution to the g­2 “puzzle”
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MiniBooNE
MiniBooNE DM search:

● 8 GeV protons on a 50m beam dump 
● Detector ~ 500 m after the beam dump

● 800 t mineral oil, 1280 PMTs

MiniBooNE test run (2013):

● 0.4 1020 protons on target
● “Off-axis” configuration to reduce   

background (reduction factor ~ 42)
● Selection cuts for DM events:

● Timing ( can travel slower than c)
● Energy (different  energy deposition) 

MiniBooNE 2014 proposal: 2 1020 PoT

Preliminary, M
A'

=300 MeV,  '=0.1
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First generation fixed target experiments: beam dump

2)

● e- beam incident on thick target
● A' is produce in a process similar to ordinary 

Bremsstrahlung
● A', emitted forward at small angle, carries 

most of the beam energy and decays before 
the detector

● Decay products are measured in the detector

Beam dump experiments for A' search: 
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