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Part 3 



The TTree (finally!) 



The ROOT trees (TTree) 

 A TTree is the ROOT implementation of a old-dear ntuple  
 Table of correlated values/objects 

 E.g. energy, time and rise time of the same event 
 The objects are not necessarily numbers  

 It can be an array or any ROOT object 
 This includes user-custom ROOT objects 

 The arrays can be also of variable size for each row 
 The actual size of the array is stored in an other column of the tree 

 Optimized to save and manage efficiently a large 
number of entries  
 It is a real option for storage (e.g. raw data) 



The ROOT trees (TTree) 

 The TTree is organized in a hierarchical structure of 
branches (TBranch) and leaves (TLeaf) 
 It is possible to read selectively from one branch or 

leaf only  no need to load the entire tree 
 In principle, branches can be written to different files 

 Additional branches can be added at a later stage 
 E.g. as a result of some kind of analysis 

 Surely the most powerful and flexible ROOT object 



Explore the content of a TTree 

 A TTree can be loaded from a TFile exactly like 
a histogram, i.e. via ->Get() 
 

[] TTree* myTree =  

  (TTree*) f.Get(“name”); 
[] myTree->StartViewer(); 

The tree viewer allows 
the interactive access 

to the tree and to all 
branches and leaves  

double click to plot 

TLeaf 
TBranch 



Command-line handling of 
TTrees - 1 

List of all variables (leaves and  branches): 
[ ]> tree->Print() 
 

One-dimensional plot of a variable 
[ ]> tree->Draw(“varname”)  
 

Scatter plot of two variables  
[ ]> tree->Draw(“varname1:varname2”) 

Add a graphical option (lego2) 
[ ]> tree->Draw(“varname1:varname2”, “”, “lego2”) 

Add a cut based on an other variable 
[ ]> tree->Draw(“varname1:varname2”, “varname3>0”, “lego”) 
 

Scatter plot of three variables 
[ ]> tree->Draw(“varname1:varname2:varname3”)     



Command-line handling of 
TTrees - 2 

Show completely the content of one event (all leaves) 
[ ]> tree->Show(eventNumber); 
 

Fit of the 1-dim distribution of one variable 
[ ]> tree->Fit(“func”, “varname”) 

Fit adding a cut 
[ ]> tree->Fit(“func”, “varname”, “varname > 10”) 
 
Class TCut to define specific cuts 
[ ]> TCut cut1=“varname1>0.3" 
[ ]> tree->Draw(“varname1:varname2”,cut1)  
[ ]> TCut cut2=“varname2<0.3*varname1+89“ 
[ ]> tree->Draw(“varname1:varname2”,cut1 && cut2) 



Create and fill a TTree 
 It is a bit worksome: 5 steps required 

1. Create the TFile 
2. Create the TTree 
3. Register TBranch to TTree 
4. Fill the TTree 
5. Write the output file 

 Easy situation: load branches (only numbers!) 
from an existing ASCII file 
 TTree* tree = new TTree("tree","My Tree Title"); 

tree->ReadFile("myfile.dat","energy/D:time/D:id/I"); 

filename Branches and types (D, I) 



Building a TTree - 1 

 Step 1: Create a new TFile 

The constructor of TFile has arguments: 
 file name (i.e. “test.root ")  
 options: NEW, CREATE, RECREATE, UPDATE, or READ 

TFile *myfile = new TFile(“test.root","RECREATE"); 

 Step 2: Create a TTree object  

The constructor of TTree has arguments: 
 Tree Name (e.g. "myTree")  
 Title (choose a descriptive one, possibly!) 

TTree *tree = new TTree("myTree","A ROOT tree"); 



Building a TTree - 2 

 Step 3: Add the branches 
 Simplest option: TBranch = TLeaf 

 Each branch contains only one variable 
 Map each branch into a memory address (i.e. a 

pointer) 
Int_t ntrack; 
Double_t energy; 
Double_t myArray[10]; 
myTree->Branch(“NTrack",&ntrack,"ntrack/I”); 
myTree->Branch("Energy",&energy,"energy/D"); 
myTree->Branch("MyArray",myArray,"myArray[10]/D"); 

Memory address where read 
the value from 

Notice: an array is already a pointer 

Variable type 



Building a TTree - 3 

 Many possible types 
 
 

 
 But one can also use user-custom classes as 

TBranch 
 Typical case: the class already "packs" in itself 

all the relevant information (e.g. MyEvent) 
 So, have a TTree of MyEvents 



Building a TTree - 4 

 Step 3 (alternative): Add the Branches 
from user-defined classes 

 Branch Name 
 Class name (optional) 
 Memory address (pointer) of the object to be stored 

(MyEvent, in this case) 
 The class MyEvent may contain several data 

members (e.g., Ntrack, Flag) 
 Each of them becomes a TLeaf 

MyEvent *event = new MyEvent(); 
myTree->Branch("EventBranch","Event",&event); 
(or) myTree->Branch("EventBranch",&event); 
 

User custom class 



Building a TTree - 5 
 Step 4: Fill the TTree 

nTrack = 5; 
energy = 12.5; 
myTree->Fill(); 

 Set the proper values to all variable/objects that have 
been registered as branches or leaves and Fill() 

 The operation can be repeated within a for() loop 

 Step 5: Save the TTree on the TFile 
The method Write()of TFile writes 
automatically all TTrees and all histograms 

myFile->Write(); 



One extra filling option 

 There is the possibility to have arrays of variable 
size as leaves of a TTree 
 Typical case: suppose you have 1000 detectors and 

only one or two have a signal in each event 
 Would you store two numbers and 998 zeroes? 
 Store only the two numbers (and the detector ID!) 

 The number of elements (event-per-event) is 
stored in an other leaf of the TTree 

Int_t nDetectors; 
Double_t energy[NMAX]; 
fTree = new TTree("tree","Global results"); 
fTree->Branch("NDetectors",&nDetectors,"NDetectors/I"); 
fTree->Branch("Energy",energy,"energy[NDetectors]/D"); 



Ok, now we want to read the 
TTree back 

 Already described how to open, read and plot a 
TTree from command line (interactively)  
 Print(), Draw(), Show(), … 
 Scatter plots, cuts on variables,… 

 But what about retrieving the content of each 
TLeaf for each event from a macro or from a C++ 
code? 
 This is surely necessary for any real-life analysis 

with a fair amount of data  
 ROOT tutorial available in 

$ROOTSYS/tutorials/tree1.C 



How to read a TTree - 1 

 Open the TFile which contains the TTree 
 

 
 Retrieve the TTree (via the name) 

TFile* file = new TFile ("tree1.root") 
file->ls(); 

TTree * t1 = 
(TTree*)file.Get("t1") 
t1->Print(); 
(or) t1->StartViewer() 

The TTree here has 5 leaves, 
named ev, px, py, pz and random  



How to read a TTree - 2 

 Create the appropriate variables to store the 
data in the leaves 
Float_t px, py; 

 Map the branches/leaves that you want to read 
into your local variables (better, into the 
memory address of them) 
 You do not have to read all branches, but only 

some of them, if you wish 
  t1->SetBranchAddress("px",&px) 
 t1->SetBranchAddress("py",&py) 

 Branch name Memory address 



How to read a TTree - 3 

 Read each row of the TTree using GetEvent(ID); 
t1->GetEvent(0); //read first event 

 After each call of GetEvent() , the variables that 
are mapped to a branch get their actual values 

 One can loop over entries and read the entire tree 
for (Int_t i=0;i<t1->GetEntries(); i++)  
 { 
  t1->GetEvent(i); 
  //do what you need with the tree content 
 } 



Load many TTrees: the 
TChain 

 Sometimes, you want to merge/load trees split 
in many files 
 Same tree name, same branches 

 May happen e.g. because 
 The tree is too big and it is split in many files  
 There is one file per each run of your experiment 

and you want to load the entire dataset 

TChain *ch = new TChain("tree"); 
ch->Add("run1.root"); 
ch->Add("run2.root"); 
ch->Print() 
ch->GetEntries() … 

Common name of 
all trees 

Add files 

Use TChain as a TTree 



Adding a branch to an existing 
TTree 

 It is possible to add a new TBranch to a TTree 
which already exists 
 Typical case: you want to add some extra variable 

calculated from the others 
TFile f("tree3.root", "update"); 
Float_t new_v; //variable for the new branch 
TTree *t3 = (TTree*)f->Get("t3"); 
TBranch *newBranch = t3->Branch("new_v", &new_v, 
"new_v/F");  
for (Int_t i = 0; i < t3->GetEntries(); i++){ 
     new_v= gRandom->Gaus(0, 1); 
     newBranch->Fill();  
   } 
t3->Write("", TObject::kOverwrite); 

Fill only the new branch 

Attach the 
branch to 
the tree 

Save only new version 



The TTree friendship 



TTree friends 
 In some cases, it is not possible/advisable to add a new 

branch to an existing tree 
 The parent tree might be readonly (raw data!) 
 Risk of losing the original tree with an unsuccessful 

attempt to save the modification 
 Solution: add a TTree friend 

 Each TTree has unrestricted access to all fields/data of its 
own friends 

To all practical purposes,  
this is equivalent to a 
single TTree which 

contains tree, friend_tree1 
and friend_tree2 



Add friends to a TTree 

 AddFriend("treeName","fileName") 
mytree->AddFriend("ft1","ff.root") 
 If no file name is given, the friend tree is looked 

for in the same TFile as the starting tree 
 If the TTree's have the same name, it is 

mandatory that the friend gets an "alias" so that 
the trees can be distinguished 
mytree->AddFriend("tree1 = tree", 
"ff.root") 
 alias original name 



Access to the friends 

 Access: 
treeName.branchName.leafName 
 The leafName only is sufficient if it 

unambiguosly identifies the leaf 
 Example: 

mytree->Draw("t2.px") 
mytree->Draw(“t2.pz”,”t1.px>0”) 
mytree->SetBranchAddress("t2.px",&p) 

 List of all branches 
mytree->Print("all"); 
 
 

 
 

Access to all 
variables of all 

TTrees 



The friend list 

 The number of entries of the friends tree must 
be equal or larger than the "main" tree 

 The "main" tree must be 
the shortest one ( "tree", 
here) 

 ft1 can be friend of tree, 
but tree cannot be friend 
di ft1 
 
 Access to the friend list: 

TTree::GetListOfFriends() 



Definition of user-custom 
ROOT classes 



One more step ahead: 
"ROOTify" your own class 

 It is possible to ROOTify user-classes, so that they 
are handled as ROOT classes: 
 instantiated by command line 
 written in ROOT files 
 used as branches in a Tree 

 Typical case: customized "containers" (e.g. 
MyEvent) and new objects (e.g. MyTRun) 
 Encapsulate and "pack" the information of an event: a 

"run = TTree of MyEvent objects" 
 Can be done as: 

 Command line (but no I/O) 
 Via ACLiC (= compiled code) 

 
 



Define your own class in 
ROOT 

 Step 1: the user class must inherit from TObject 
(or from the derived class TNamed) 
 The user class inherits all characteristics of the 

ROOT objects, as the name (string) and all methods 
for I/O and management (e.g. Write() ) 

 Step 2: add to the source code the lines 
  ClassDef(ClassName,ClassVersionID)  
  At the end of the header (.h) 
  Takes a version number ID 

ClassImp(ClassName)  
  At the beginning of the implementation (.c) 



ClassDef() and ClassImp() 
 ClassDef() and ClassImp() are macros 

defined in ROOT 
 They are required to manage the I/O of the 

object  
 They actually yield: 

 The streamer methods to write the objects in a 
ROOT file or as branches of a TTree. 

 Method ShowMembers()to list public class 
members 

 Overload of the input operator >> 
 User must provide a default constructor for 

his/her class  



A concrete example 

class MyTRun : public TNamed 
{ 
public: 
  MyTRun() {;}; 
  virtual ~MyTRun(){;}; 
     
  ClassDef(MyTRun, 1) // Run class 
}; 

#include "MyTRun.hh" 
 
ClassImp(MyTRun); 

.h 

.c 
ROOT inheritance 



That's not enough… 
 Step 3: (optional) create a file called LinkDef.h. 

It is required to notify ROOT of the presence of a 
new user-custom class, to be included in the 
dictionary  

#ifdef __CINT__ 

#ifdef __CLING__ 

#pragma link off all globals; 

#pragma link off all classes; 

#pragma link off all functions; 

#pragma link C++ class MyTRun; 

#endif 

Line to add 

ROOT <= 5 

ROOT 6 



Still, that's not enough… 
 Step 4 (and last): Create the dictionary using the command 
rootcint   

     $(ROOTSYS)/bin/rootcint  
 -f MyDictionary.cxx  
 -c MyTRun.cxx [LinkDef.h] 

 The output are the files MyDictionary.cxx and 
MyDictionary.h 
 They are compiler-ready and can be used to produce a 

shared library 
 LinkDef.h (if given) must be the last argument of the 
rootcint command line 
 The name of the LinkDef file must contain the string LinkDef.h 

or linkdef.h: 
 MyNice_LinkDef.h is ok  

 Notice: for ROOT 6, use rootcling instead of rootcint 



ROOT extras 



Other tools available in ROOT 

 In these lectures, there was only an overview of the 
main tools available in ROOT 

 There are many more, e.g. 
 Linear algebra and matrix/vector calculations 
 Support for custom GUI's and interface to Qt 
 Handling of spectra (TSpectra) 

 Automatic peak finding, fitting, etc. 
 Python module (PyROOT) 

 Not all tools are compiled by default when building 
ROOT 
 some of them have to be activated explicitly 



Other tools available in ROOT 

 Additional tools for (advanced) fitting 
 Minuit2 
 RooFit 

 RooFit initialially developed by BaBar 
 Model the expected event distribution of events 
 Unbinned maximum likelihood fits 
 Generate "toy Monte Carlo" samples for various studies 
gSystem->Load("libRooFit") ; 
using namespace RooFit ; 

 Some modules/tools were provided by experiments or 
by other users 

 



Other tools available in ROOT 

 Toolkit for Multivariate Data Analysis (TVMA) 
 External package, distributed with ROOT 

 
 
 

 Includes advanced analysis tools like:  
 Artificial Neural Networks, Boosted/Bagged decision trees, 

Support Vector Machine, Multidimensional probability 
density estimation, Rectangular cut optimisation 

  User custom modules can be built and integrated 
in the ROOT source dir 
 Makefile MyModules.mk provided 



It is your turn, now: 

 Try Task2 under 

http://geant4.lngs.infn.it/ROOTAlghero2015
/introduction/index.html 
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