
Luciano Pandola
INFN, LNS

Thanks to: N. Di Marco, S. Panacek and A. Tramontana

Part 3

The TTree (finally!)

The ROOT trees (TTree)

 A TTree is the ROOT implementation of a old-dear ntuple
 Table of correlated values/objects

 E.g. energy, time and rise time of the same event
 The objects are not necessarily numbers

 It can be an array or any ROOT object
 This includes user-custom ROOT objects

 The arrays can be also of variable size for each row
 The actual size of the array is stored in an other column of the tree

 Optimized to save and manage efficiently a large
number of entries
 It is a real option for storage (e.g. raw data)

The ROOT trees (TTree)

 The TTree is organized in a hierarchical structure of
branches (TBranch) and leaves (TLeaf)
 It is possible to read selectively from one branch or

leaf only  no need to load the entire tree
 In principle, branches can be written to different files

 Additional branches can be added at a later stage
 E.g. as a result of some kind of analysis

 Surely the most powerful and flexible ROOT object

Explore the content of a TTree

 A TTree can be loaded from a TFile exactly like
a histogram, i.e. via ->Get()

[] TTree* myTree =

 (TTree*) f.Get(“name”);
[] myTree->StartViewer();

The tree viewer allows
the interactive access

to the tree and to all
branches and leaves 

double click to plot

TLeaf
TBranch

Command-line handling of
TTrees - 1

List of all variables (leaves and branches):
[]> tree->Print()

One-dimensional plot of a variable
[]> tree->Draw(“varname”)

Scatter plot of two variables
[]> tree->Draw(“varname1:varname2”)

Add a graphical option (lego2)
[]> tree->Draw(“varname1:varname2”, “”, “lego2”)

Add a cut based on an other variable
[]> tree->Draw(“varname1:varname2”, “varname3>0”, “lego”)

Scatter plot of three variables
[]> tree->Draw(“varname1:varname2:varname3”)

Command-line handling of
TTrees - 2

Show completely the content of one event (all leaves)
[]> tree->Show(eventNumber);

Fit of the 1-dim distribution of one variable
[]> tree->Fit(“func”, “varname”)

Fit adding a cut
[]> tree->Fit(“func”, “varname”, “varname > 10”)

Class TCut to define specific cuts
[]> TCut cut1=“varname1>0.3"
[]> tree->Draw(“varname1:varname2”,cut1)
[]> TCut cut2=“varname2<0.3*varname1+89“
[]> tree->Draw(“varname1:varname2”,cut1 && cut2)

Create and fill a TTree
 It is a bit worksome: 5 steps required

1. Create the TFile
2. Create the TTree
3. Register TBranch to TTree
4. Fill the TTree
5. Write the output file

 Easy situation: load branches (only numbers!)
from an existing ASCII file
 TTree* tree = new TTree("tree","My Tree Title");

tree->ReadFile("myfile.dat","energy/D:time/D:id/I");

filename Branches and types (D, I)

Building a TTree - 1

 Step 1: Create a new TFile

The constructor of TFile has arguments:
 file name (i.e. “test.root ")
 options: NEW, CREATE, RECREATE, UPDATE, or READ

TFile *myfile = new TFile(“test.root","RECREATE");

 Step 2: Create a TTree object

The constructor of TTree has arguments:
 Tree Name (e.g. "myTree")
 Title (choose a descriptive one, possibly!)

TTree *tree = new TTree("myTree","A ROOT tree");

Building a TTree - 2

 Step 3: Add the branches
 Simplest option: TBranch = TLeaf

 Each branch contains only one variable
 Map each branch into a memory address (i.e. a

pointer)
Int_t ntrack;
Double_t energy;
Double_t myArray[10];
myTree->Branch(“NTrack",&ntrack,"ntrack/I”);
myTree->Branch("Energy",&energy,"energy/D");
myTree->Branch("MyArray",myArray,"myArray[10]/D");

Memory address where read
the value from

Notice: an array is already a pointer

Variable type

Building a TTree - 3

 Many possible types

 But one can also use user-custom classes as

TBranch
 Typical case: the class already "packs" in itself

all the relevant information (e.g. MyEvent)
 So, have a TTree of MyEvents

Building a TTree - 4

 Step 3 (alternative): Add the Branches
from user-defined classes

 Branch Name
 Class name (optional)
 Memory address (pointer) of the object to be stored

(MyEvent, in this case)
 The class MyEvent may contain several data

members (e.g., Ntrack, Flag)
 Each of them becomes a TLeaf

MyEvent *event = new MyEvent();
myTree->Branch("EventBranch","Event",&event);
(or) myTree->Branch("EventBranch",&event);

User custom class

Building a TTree - 5
 Step 4: Fill the TTree

nTrack = 5;
energy = 12.5;
myTree->Fill();

 Set the proper values to all variable/objects that have
been registered as branches or leaves and Fill()

 The operation can be repeated within a for() loop

 Step 5: Save the TTree on the TFile
The method Write()of TFile writes
automatically all TTrees and all histograms

myFile->Write();

One extra filling option

 There is the possibility to have arrays of variable
size as leaves of a TTree
 Typical case: suppose you have 1000 detectors and

only one or two have a signal in each event
 Would you store two numbers and 998 zeroes?
 Store only the two numbers (and the detector ID!)

 The number of elements (event-per-event) is
stored in an other leaf of the TTree

Int_t nDetectors;
Double_t energy[NMAX];
fTree = new TTree("tree","Global results");
fTree->Branch("NDetectors",&nDetectors,"NDetectors/I");
fTree->Branch("Energy",energy,"energy[NDetectors]/D");

Ok, now we want to read the
TTree back

 Already described how to open, read and plot a
TTree from command line (interactively)
 Print(), Draw(), Show(), …
 Scatter plots, cuts on variables,…

 But what about retrieving the content of each
TLeaf for each event from a macro or from a C++
code?
 This is surely necessary for any real-life analysis

with a fair amount of data
 ROOT tutorial available in

$ROOTSYS/tutorials/tree1.C

How to read a TTree - 1

 Open the TFile which contains the TTree

 Retrieve the TTree (via the name)

TFile* file = new TFile ("tree1.root")
file->ls();

TTree * t1 =
(TTree*)file.Get("t1")
t1->Print();
(or) t1->StartViewer()

The TTree here has 5 leaves,
named ev, px, py, pz and random

How to read a TTree - 2

 Create the appropriate variables to store the
data in the leaves
Float_t px, py;

 Map the branches/leaves that you want to read
into your local variables (better, into the
memory address of them)
 You do not have to read all branches, but only

some of them, if you wish
 t1->SetBranchAddress("px",&px)
 t1->SetBranchAddress("py",&py)

 Branch name Memory address

How to read a TTree - 3

 Read each row of the TTree using GetEvent(ID);
t1->GetEvent(0); //read first event

 After each call of GetEvent() , the variables that
are mapped to a branch get their actual values

 One can loop over entries and read the entire tree
for (Int_t i=0;i<t1->GetEntries(); i++)
 {
 t1->GetEvent(i);
 //do what you need with the tree content
 }

Load many TTrees: the
TChain

 Sometimes, you want to merge/load trees split
in many files
 Same tree name, same branches

 May happen e.g. because
 The tree is too big and it is split in many files
 There is one file per each run of your experiment

and you want to load the entire dataset

TChain *ch = new TChain("tree");
ch->Add("run1.root");
ch->Add("run2.root");
ch->Print()
ch->GetEntries() …

Common name of
all trees

Add files

Use TChain as a TTree

Adding a branch to an existing
TTree

 It is possible to add a new TBranch to a TTree
which already exists
 Typical case: you want to add some extra variable

calculated from the others
TFile f("tree3.root", "update");
Float_t new_v; //variable for the new branch
TTree *t3 = (TTree*)f->Get("t3");
TBranch *newBranch = t3->Branch("new_v", &new_v,
"new_v/F");
for (Int_t i = 0; i < t3->GetEntries(); i++){
 new_v= gRandom->Gaus(0, 1);
 newBranch->Fill();
 }
t3->Write("", TObject::kOverwrite);

Fill only the new branch

Attach the
branch to
the tree

Save only new version

The TTree friendship

TTree friends
 In some cases, it is not possible/advisable to add a new

branch to an existing tree
 The parent tree might be readonly (raw data!)
 Risk of losing the original tree with an unsuccessful

attempt to save the modification
 Solution: add a TTree friend

 Each TTree has unrestricted access to all fields/data of its
own friends

To all practical purposes,
this is equivalent to a
single TTree which

contains tree, friend_tree1
and friend_tree2

Add friends to a TTree

 AddFriend("treeName","fileName")
mytree->AddFriend("ft1","ff.root")
 If no file name is given, the friend tree is looked

for in the same TFile as the starting tree
 If the TTree's have the same name, it is

mandatory that the friend gets an "alias" so that
the trees can be distinguished
mytree->AddFriend("tree1 = tree",
"ff.root")
 alias original name

Access to the friends

 Access:
treeName.branchName.leafName
 The leafName only is sufficient if it

unambiguosly identifies the leaf
 Example:

mytree->Draw("t2.px")
mytree->Draw(“t2.pz”,”t1.px>0”)
mytree->SetBranchAddress("t2.px",&p)

 List of all branches
mytree->Print("all");

Access to all
variables of all

TTrees

The friend list

 The number of entries of the friends tree must
be equal or larger than the "main" tree

 The "main" tree must be
the shortest one ( "tree",
here)

 ft1 can be friend of tree,
but tree cannot be friend
di ft1

 Access to the friend list:

TTree::GetListOfFriends()

Definition of user-custom
ROOT classes

One more step ahead:
"ROOTify" your own class

 It is possible to ROOTify user-classes, so that they
are handled as ROOT classes:
 instantiated by command line
 written in ROOT files
 used as branches in a Tree

 Typical case: customized "containers" (e.g.
MyEvent) and new objects (e.g. MyTRun)
 Encapsulate and "pack" the information of an event: a

"run = TTree of MyEvent objects"
 Can be done as:

 Command line (but no I/O)
 Via ACLiC (= compiled code)

Define your own class in
ROOT

 Step 1: the user class must inherit from TObject
(or from the derived class TNamed)
 The user class inherits all characteristics of the

ROOT objects, as the name (string) and all methods
for I/O and management (e.g. Write())

 Step 2: add to the source code the lines
 ClassDef(ClassName,ClassVersionID)
 At the end of the header (.h)
 Takes a version number ID

ClassImp(ClassName)
 At the beginning of the implementation (.c)

ClassDef() and ClassImp()
 ClassDef() and ClassImp() are macros

defined in ROOT
 They are required to manage the I/O of the

object
 They actually yield:

 The streamer methods to write the objects in a
ROOT file or as branches of a TTree.

 Method ShowMembers()to list public class
members

 Overload of the input operator >>
 User must provide a default constructor for

his/her class

A concrete example

class MyTRun : public TNamed
{
public:
 MyTRun() {;};
 virtual ~MyTRun(){;};

 ClassDef(MyTRun, 1) // Run class
};

#include "MyTRun.hh"

ClassImp(MyTRun);

.h

.c
ROOT inheritance

That's not enough…
 Step 3: (optional) create a file called LinkDef.h.

It is required to notify ROOT of the presence of a
new user-custom class, to be included in the
dictionary

#ifdef __CINT__

#ifdef __CLING__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ class MyTRun;

#endif

Line to add

ROOT <= 5

ROOT 6

Still, that's not enough…
 Step 4 (and last): Create the dictionary using the command
rootcint

 $(ROOTSYS)/bin/rootcint
 -f MyDictionary.cxx
 -c MyTRun.cxx [LinkDef.h]

 The output are the files MyDictionary.cxx and
MyDictionary.h
 They are compiler-ready and can be used to produce a

shared library
 LinkDef.h (if given) must be the last argument of the
rootcint command line
 The name of the LinkDef file must contain the string LinkDef.h

or linkdef.h:
 MyNice_LinkDef.h is ok

 Notice: for ROOT 6, use rootcling instead of rootcint

ROOT extras

Other tools available in ROOT

 In these lectures, there was only an overview of the
main tools available in ROOT

 There are many more, e.g.
 Linear algebra and matrix/vector calculations
 Support for custom GUI's and interface to Qt
 Handling of spectra (TSpectra)

 Automatic peak finding, fitting, etc.
 Python module (PyROOT)

 Not all tools are compiled by default when building
ROOT
 some of them have to be activated explicitly

Other tools available in ROOT

 Additional tools for (advanced) fitting
 Minuit2
 RooFit

 RooFit initialially developed by BaBar
 Model the expected event distribution of events
 Unbinned maximum likelihood fits
 Generate "toy Monte Carlo" samples for various studies
gSystem->Load("libRooFit") ;
using namespace RooFit ;

 Some modules/tools were provided by experiments or
by other users

Other tools available in ROOT

 Toolkit for Multivariate Data Analysis (TVMA)
 External package, distributed with ROOT

 Includes advanced analysis tools like:
 Artificial Neural Networks, Boosted/Bagged decision trees,

Support Vector Machine, Multidimensional probability
density estimation, Rectangular cut optimisation

 User custom modules can be built and integrated
in the ROOT source dir
 Makefile MyModules.mk provided

It is your turn, now:

 Try Task2 under

http://geant4.lngs.infn.it/ROOTAlghero2015
/introduction/index.html

	Diapositiva numero 1
	The TTree (finally!)
	The ROOT trees (TTree)
	The ROOT trees (TTree)
	Explore the content of a TTree
	Command-line handling of TTrees - 1
	Command-line handling of TTrees - 2
	Create and fill a TTree
	Building a TTree - 1
	Building a TTree - 2
	Building a TTree - 3
	Building a TTree - 4
	Building a TTree - 5
	One extra filling option
	Ok, now we want to read the TTree back
	How to read a TTree - 1
	How to read a TTree - 2
	How to read a TTree - 3
	Load many TTrees: the TChain
	Adding a branch to an existing TTree
	The TTree friendship
	TTree friends
	Add friends to a TTree
	Access to the friends
	The friend list
	Definition of user-custom ROOT classes
	One more step ahead: "ROOTify" your own class
	Define your own class in ROOT
	ClassDef() and ClassImp()
	A concrete example
	That's not enough…
	Still, that's not enough…
	ROOT extras
	Other tools available in ROOT
	Other tools available in ROOT
	Other tools available in ROOT
	It is your turn, now:

