Next generation space experiments for TeV-PeV energies

R. Aloisio, L. Baldini, P. Blasi, M. Cirelli, F. Donato, N. Fornengo, D. Grasso, <u>M. Incagli</u>, M. Pesce-Rollins, C. Sgro

> WhatNext – CR Padova 2-4 Dec 2014

What's This?

- (partial) summary of a mini-workshop (2 days, 10 people invited , +local participants) in Pisa, 8-9 May 2014;
- organized BEFORE the WhatNext era;
- experimentalists (AMS, Fermi) and theroreticians for a joint discussion on
 - "Physics Cases and Technical Solutions for a Next Generation Space Experiment after AMS and Fermi"

Current issues in CR propagation

- Several important observables in the field of CR are well described by simple models of propagation and acceleration
- Yet there are some tensions with experimental data:
 - p/He ratio: He spectrum seems to be harder than protons, at least for energies <10TeV : hardly explainable in terms of Fermi acceleration
 - CR spectrum hardening: p and He spectra seem to harden at ~250 GeV , which requires a spectral break at these energies
 - o anisotropy: models with index δ >0.5 predict an anisotropy larger than what observed in the 1-100 TeV range
 - ο γ-ray gradient: the measured diffuse γ-ray emission galactocentric gradient is flatter than predictions

The role of Space Detectors

- Necessity of a new generation of experiments in the TeV-PeV range
- This energy range can (and should) be covered by ground-based telescopes
- But space-based experiments can detect the primary CR component (i.e. before interacting with atmosphere) → sensitive to nuclear composition
- An additional bonus of space experiments is the possibility of measuring the charge sign

 access to anti-particles
- Limits: dimensions, mass, cost !

Recent, present and future Space (and Balloon) Detectors

Experiment	Geometrical Acceptance (m ² sr)			σΙ		
	е	γ	р	e, γ	р	
ATIC	0.24	0.24	0.24	2% @ ?	-	hallo an
CREAM	-	-	0.43	-	45% @ 100 TeV	Dalloon
AMS02	0.05	0.05	0.02-0.25(*)	2% @200GeV	-	
Fermi	2	2	-	5-15 %	-	space
Pamela	0.0022	0.0022	-	5-10 %	-	1
CALET	0.12	0.12	-	2% @ 1TeV	40% @ 1TeV	noor futuro
DAMPE	0.2	0.2	-	1.5% @ 800 GeV	40% @ 800 GeV	ileai iuture
ISS CREAM	-	-	0.43	-	45% @ 100 TeV	
Gamma400	3	1	3	2% @ 1 TeV	35% @ 1 TeV	
HERD (3	?	3	1% @ 1TeV	30% @ 10 TeV	medium term
AMS03 (**)	0.75	0.75	?	2% @ 1 TeV	?	

(*) full span - inner only (**) to be intended as "generic magnetic spectrometer"

• Note that a fair comparison among so many different instruments is close to impossible

o take these numbers cum grano salis

Space Detectors

- Energy range: E>10GeV

 not trying to do E=100 MeV at the same time!
- Space experiments can be classified as
- 1. Magnetic spectrometers (à la AMS02)
- 2. Pair-conversion telescopes (à la Fermi)
- 3. Cosmic Ray calorimeters (à la CREAM or ATIC, but also ISS-CREAM, CALET, DAMPE, ...), that can be specialized on hadrons or on em-showers

> with possible combinations of the techniques

Space Detectors

- <u>Spectrometers</u> : momentum and charge sign
 - o access to anti-particles (positrons, antiprotons, ...)
 - o access to CR isotopical composition (in principle)
 - BUT... magnet is heavy (permanent) or hard to operate (superconducting) → some R&D in progress
- <u>Pair-conversion telescope</u>: gamma physics
 - dedicated tracking stage (>1 X_0) in which γ ->e⁺e⁻
 - excellent Point Spread Function (PSF = angular resolution)
 - BUT ... adds some complexity: impact on Field Of View and Energy resolution
- <u>Calorimeters</u> : e[±], p, nuclei (Z measurement)

maximum acceptance

- o reach of high energies (~ PeV) for hadrons
- Marco Incagli INFN Pisa

3 dic 2014 • 7

Statistics vs Acceptance

Geometrical Acceptance: Fermi ----AMS02

- The CR flux rapidly decreases with energy (~E⁻³)
- For an Acceptance of 1m² sr year → at most 100 e⁺+e⁻ events per year are expected at E~2-3 TeV
- A magnetic spectrometer is limited by the Field Of View (see next slide)

Comparison AMS02-Fermi

Next generation experiments

• Under some "reasonable" assumptions (no time to detail them here) possible figures for a next generation experiment are:

	$\Delta E/E$ em (asymprotic)	$\Delta E/E$ had (asymptotic)	Charge Discrimination	PSF (degrees)	acceptance $(m^2 sr)$
Magnetic Detector	2%	40%	up to 5.6 TeV (e^+) up to 1.5 TeV (\bar{p})	0.5	0.71
γ telescope	2%	40%	*	0.05	2.5
Calorimeter	1%	20%	2. 7 0	0.5	6

 Question: how much you can give up in statistics in order to gain in anti-particle identification (Magnet) or γ pointing capability (γ-converter)?

Example: Sensitivity to Gamma line

 Annihilation of a Dark Matter particle in a photon pair results in a <u>distinct "line" in the photon spectrum</u>

• Both n_s and n_b are proportional to the Geometrical Acceptance A

Marco Incagli - INFN Pisa

3 dic 2014 • 11

And what about the systematics

- Three main general sources (I will not discuss terms like Z identification, trigger, ... as they are too much experiment-related):
- 1. Systematic error on the **geometrical acceptance**

$$\frac{\Delta J}{J} = -\frac{\Delta G}{G}$$
 G = Geometrical Acceptance

2. Systematic error on energy resolution

$$\frac{\Delta J}{J} \sim \left(\frac{\Delta E}{E}\right)^2 \qquad \Delta E/E = \text{Energy Resolution}$$

3. Systematic error on absolute energy scale

$$\frac{\Delta J}{J} = (\Gamma - 1) \frac{\Delta s_E}{s_E}$$

 Δs_E = shift on asolute Energy Scale

Putting all together

- Assumptions:
 - o *∆G/G=10%*
 - $\circ \Delta E/E = 30\%$
 - $\circ \Delta s_E = 5\% -> 15\%$
- Spectral deformations are bracketed by the solid line
- Grey lines represent a power spectrum with a break ($\Delta\Gamma$ ~0.2) at 1 Tev

 The break is visible, provided the measurement extends up to >20TeV (in this case the grey line "sticks out" of the systematic limit)

Example:

break in proton spectrum

- Two possible models which "describe" the data
- How well are the spectral features visible if one assumes an energy resolution ΔE/E=40% (but a correct energy scale)?

- Pseudo-experiments with an effective geometrical acceptance of 1m²sr (effective = multiplied by selection efficiency) and 3 years of data taking
- For an (arbitrary) systematic of 2% flat in energy and a ΔE/E=40%, the break can be observed, but an unfolding is necessary to have the correct spectrum

Absolute energy scale

- However the most dangerous systematic is the absolute energy scale (not considered before!)
- Any possibility of calibrating in space?
- <u>Earth limb</u>: highest high-energy γ-ray source in Low Earth Orbit (LEO)
 - $_{0}$ with 5m^{2}sr a few thousand atmospheric $\gamma\text{-rays}$ per year above 1 TeV
 - o x100 the celestial intensity
 - o ~1° wide at ~110°
 - o inelasticity factor k~0.16

Requirements for

Next Generation Space Experiments

- The basic requirements for a Next Generation Space Experiment are:
 - o maximal geometrical acceptance
 - o identification of nuclei (Z) and electrons
 - o capability of measuring hadron energy

LARGE ACCEPTANCE CALORIMETER

- What physics are we excluding, by giving up on the presence of a γ-converter or a magnet?
- Example: what about Dark Matter?

 need access to anti-particle? → magnet
 need analysis of γ-line or Diffuse Galactic Emission (DGE)? → γ-converter

DM in e⁺+e⁻ (all electrons)

- Can DM be observed in the total flux (no charge sign)?
- Model of χχ->l⁺l⁻->e⁺e⁻X (democratic leptons) with a sharp decrease of the e[±] flux at M_χ

Generation of pseudo-experiments

- Simulating N years of data (1 year = $2*10^7$ sec) with N=3-5
- Effective geometrical acceptance A of 1m²sr 5m²sr
- The most critical assumptions are: o protons have all been removed o signal efficiency is flat over the whole range • The most critical assumptions are: 10^{-2} 10⁻³ the whole range These assumptions are critical as the ep ratio rapidly 10^{-4} (e⁺ + e) ∄p decrease above 1 TeV 10^{-5} Marco Incagli - INFN Pisa 10^{2} 10^{3} 10^{4} 10

Kinatia anaray [Cal/1

$A = 1 m^2 sr - T = 3 years$

$A = 4 m^2 sr - T = 5 years$

DM->e⁺+e⁻ in calorimeter experiment

• From this simple simulation, a 3σ effect is observed in 5 years (5*2*10⁷ sec) with A=F* ϵ ~4m²sr

Magnet only : anti-protons

- the maximum rigidity accessible for anti-particles is limited by the charge discrimination capability (CC)
- CC depends on the antiparticle/particle ratio (r) and on the Maximum Detectable Rigidity (MDR)
- For a detector with an MDR = 6.7 TeV (a possible AMS03), and some reasonable assumptions, the anti-particle rigidity is limited to a fraction f_{CC} of R_{MDR} as from the following table:

r	10 ⁻¹	10^{-2}	10 ⁻³	10^{-4}	10^{-5}
fcc	0.83	0.45	0.33	0.27	0.23
R_{CC} (TeV)	5.63	3.07	2.25	1.82	1.53
				1	
				ti-prot	ons

3 dic 2014 • 24

Marco Incagli - INFN Pisa

Magnet only : isotopes

Isotopes are identified by a combined measurement of

o rigidity *R* (energy resolution is too poor)
o velocity β, with TOF or Cherenkov techniques

$$A = \frac{RZe}{m_n c\beta\gamma} \qquad \left(\frac{\delta A}{A}\right)^2 = \left(\gamma^2 \frac{\delta\beta}{\beta}\right)^2 + \left(\frac{\delta R}{R}\right)^2$$

- Due to the γ^2 term, assuming a per mill resolution on β (RICH) A can be measured up to ~10 GeV/n
- with TOF the limit is ~1 GeV (~1% resolution)
- $\delta R/R$ must be ≤ 0.1 to have $\delta A \leq 1$ for A=10 (Beryllium)

Gamma-converter ?

- The main advantage of a γ-converter detector is a better PSF, useful to study point sources
- With the advent of CTA, which can reach energies down to few tens of GeV with their large telescopes, it is not clear the physics case which justifies such a technical choice
- By looking at LAT data, also the analyses of Diffuse Galactic Emission or Dwarf Galaxies are limited by statistics, and not by PSF
- Calorimeters can measure the photon axis better than 1° at energies ~20-30 GeV and above; is this enough?

AMS-ECAL sky map

Conclusion or Ode to the Dishwasher

• Go for the largest and heaviest object you can build: a Dishwasher in Space!

3 dic 2014 • 28

• Marco Incagli - INFN Pisa

3 dic 2014 • 29

Spare Slides

- Prospects for studying the high-energy DGE:
 - arguably, an instrument with a much better PSF than Fermi (e.g., Gamma-400) will do much better in mapping out the details.
- The DGE is a foreground for all the gamma-ray analyses!
 - Improving here, would be just terrific.
- How do I quantify it all?

Diffuse Galactic Emission – 2/3

Well... Take a patch of the sky subtending a solid angle equivalent to a circle with a radius of the PSF 68% containment:

 $\Delta\Omega(E) = 2\pi \left[1 - \cos\theta_{68}(E)\right] \sim \pi\theta_{68}^2(E)$

Calculate the integral count spectrum above a given energy E₀ from such a patch:

 $n_{68}(E_0) = \int_{E_0}^{\infty} J_{DGE}(E) \mathcal{E}(E) \Delta \Omega(E) dE$

- And I argue that when this number is less than, say, ~ 10 you are not really resolving the sub-PSF details of the DGE anymore.
- This is really a complicate interplay of the PSF and the acceptance (again).
 - Any attempt of discussing IRFs (PSF or energy resolution) with no explicit reference to the detector acceptance is at least misleading.
- Ok, now we can play this game for all directions in the sky.

Diffuse Galactic Emission – 3/3

- Remember: 0.15° is representative of the high-energy PSF 68% containment of the LAT.
- And ~ 1 m² sr year is representative of the exposure accumulated by the LAT in the entire mission.
- The LAT limited by statistics (for the DGE) above 10 GeV.
 - A better PSF would not help.
 - Not even in the Galactic center.

Z resolution

Heavy DM in anti-protons

- Is a DM anti-p signal at ~1TeV "reasonable"?
- It requires M_{DM}>10TeV and a substantial boost factor

