

Cosmic rays and accelerator(s), some ideas

Gianluca Cavoto (INFN Roma)
What Next Padova $3^{\text {rd }}$ Dec 2014

- Few ideas on how to exploit CERN accelerators, in particular an extracted LHC beam.
- Discussions with several people (P.Lipari, R.Engel, R.Ulrich, F.Donato, O.Adriani, B.Bertucci, ...)
- Part of the subject of CRYSBEAM(*)
- Efficient crystal extraction of a multi-TeV hadron beam for fixed target experiments
- Discuss some scenarios
- with the declared aim to provoke some discussion and (maybe) propose an experiment.
(*) CRYSBEAM is funded with a ERC Consolidator Grant GA 615089 (FP7 IDEAS action) with a 2M euro budget for the period May 2014-May 2019.
INFN is the Host Institution

Physics with a multi- TeV hadron beam

- QCD at unprecedented laboratory energies and momentum transfers
- Gluon/heavy flavour at large Bjorken x (BSM searches)
- Proton spin physics
- Quarkonia physics
- Heavy ion collisione at large rapidity
- Quark-gluon plasma excitation in the target rest frame
- Diffractive physics
- ... and more with secondary beams
"Physics opportunities of a fixed-target experiment using LHC beams" S. J. Brodsky, F. Fleuret, C. Hadjidakis, and J. P. Lansberg, Phys. Rep. 522 (2013) 239-255.

Recent Workshop at CERN (AFTER@LHC)

https://indico.cern.ch/event/325836/session/0/contribution/0/material/slides/0.pdf
Espression of Interest Letter in preparation

- Is the study of interaction of multi-TeV hadrons with different nuclei (C,N,O,...) useful for CR physics?

Hadronic interaction in air showers

Development of cosmic-ray air showers

1. Inelastic cross section large \rightarrow rapid development small \rightarrow deep penetrating
2. Inelasticity $\mathbf{k}=\mathbf{1}-\mathbf{p}_{\text {lead }} / \mathbf{p}_{\text {beam }}$ large \rightarrow rapid development small \rightarrow deep penetrating
3. Forward energy spectrum softer \rightarrow rapid development harder \rightarrow deep penetrating
4. Nuclear effects
5. Extrapolation to high energy precise measurements at available energies are crucial
$\mathrm{E} \sim \mathrm{GeV}$
6. Charge ratio
7. Multiplicity
number of muons in air shower sensitive to mass composition

- Accelerator based experiments to unravel this (LHC-f, NA61 at CERN,...)

CR Mass composition

Pierre Auger Observatory

Shower maximum position

Cross section

Data interpretation depends on MC used to described the shower Is it useful to reproduce in lab such showers at (much) lower energy?

Propagation of Cosmic Rays in Galaxy

- Evidence of anti-matter excess in (galactic) cosmic rays (PAMELA, AMS-02, etc.)
- Is this a sign of Dark Matter annihilating in our Galaxy?

- It might only be due to cosmic rays interaction in interstellar medium
- Improve propagation models with more precise cross section measurement
- (B/C spallation, anti-proton production from He target,...)
- Measure p-p and p-He cross sections in the Ep $\sim 1 \mathrm{GeV}$ - few TeV range

More muons in air-shower data than expected
Auger, arXiv-1408.1421 [atro-ph]
-Can be a problem in interaction physics in air-shower model? -Is a muon counting experiment after a beam dump interesting (or enough) to help solving this?
-Do we need to study charm content of a shower? Access to parton with momentum fraction $\mathrm{x} \rightarrow 1$ in the target.
-Study production of charm from light nuclei directly?

CRYSBEAM basic idea

PARASITIC EXTRACTION of HALO BEAM with a bent crystal in channeling orientation
Low background, continuous extraction of the beam halo 10^{8} particle per second might be possible

The RD22 Collaboration, CERN DRDC 94-11

- Crystal used in other accelerators (U70) in the o $(100 \mathrm{GeV}$) energy range

Fig. 2. Schematic layout of vertical halo extraction using channeling in a bent silicon crystal. After the warm septum magnet the extracted beam is bent by a string of five superconducting dipoles of the LHC type [14].

- Discussion with CERN accelerator people just started
- Crystal can play a substantial role
$\sim 67 \mathrm{~m}, \Delta \mu=90^{\circ}$ $\xrightarrow{\sim 60 \mathrm{~m}, \Delta \mu=90^{\circ}}$

- Extensive tests with $120-270 \mathrm{GeV}$ protons and Pb ions
- 150μ rad deflection
- $\theta_{C} \sim 20-13 \mu \mathrm{rad}$
- Single bunch and multibunch dedicated beams
- Fast and reproducible crystal alignment
- Clear loss reduction with respect to an amorphous orientation
- Up to x20 reduction

Critical Radius for channeling, a challenge

- Deflection angle $\Phi=\mathrm{L} / \mathrm{R}_{\text {R is crystal curvature radius and } L \text { is the crystal length }}$

Effective potential in presence of centrifugal force (bending)

Critical radius to have an efficient channeling

$$
R_{c} \approx \frac{\frac{p}{Z_{i}} \beta}{\pi Z e^{2} N d}
$$

, ~1 mrad deflection requires $\sim 12 \mathrm{~cm}$ long Si crystal (or 7 cm long Ge crystal)

- Much longer than what UA9 tested and used so far

Possible experiments

Air-showers of Cosmic Rays in a lab

- Strategy: sub-showers of UHECR air-shower can be reproduced in lab: compare with MC (CORSIKA)
- Following shower evolution as in air-shower experiment!

- Hadron beam of 10 GeV - 10 TeV (both SPS and LHC)
- Different targets (carbon, water, liq. nitrogen)

A smart absorber experiment

- Dump the extracted beam onto a light element absorber.
- Possibly change the absorber
- Count the number of particles crossing thin active layers

Can be tested on SPS North Area were proton and pion beam are currently available (up to 400 GeV energy)

Eventually moved to LHC (crystal) extracted line

Some synergy with Particle Flow Calorimeter R\&D (ILC detector calorimeter)

Hadronic model in air-shower MC

Strategy: use CORSIKA to simulate a dense uniform atmosphere (a "lab" atmosphere) at lab energies.

- Critical measurements
- Position of first interaction
- Xmax, RMS(Xmax)
- Number of ionizing particles

Change hadronic model and compare with experiment
First look at FLUKA vs SYBILL show a 10\% discrepancy in Xmax at 400 GeV and 7 TeV .

FLUKA simulations

- More detailed tool to study geometry and algorithm to extract cross section information [$\left.\sigma_{\text {tot }}=1 /\left(\mathbf{n} \lambda_{\text {in }}\right)\right]$

Carbon layers: $43 \mathrm{~mm} /$ Scint layers: 7 mm

Optimization of the number of active layers Impose constraint given by available space

Advanced layout

- Hard to cover such a wide range of momentum (few $\mathrm{GeV}-1 \mathrm{TeV}$) with the same apparatus
- Need a tracker in a magnet (\$\$\$)
- Need excellent PID
- Need to be moved from SPS lines to LHC line
- ... isn't it a copy of AMS-02 itself??

Movable single-arm spectrometer!

Fluences after a LHe tank ($\mathrm{R}=1 \mathrm{cn}$, L=30cn) Aperture=2pi Bean: protons E=18日GeV

Optimize
He target
to get
a cross
section
measurement

Internal gas target at LHC-b (SMOG)

Beam-gas interaction used for luminosity meas. (SMOG)

They injected $\sim 10^{-7} \mathrm{mbar} \mathrm{Ne}$ in LHC beam pipe (!!!)

Other gases are possible

LHC-b is a naturally forward detector (its physic core program is beauty and charm physics)

Given its very good tracking and PID capability could easily measure particle spectra! (but limited rapidity coverage)
If problem with He in beam pipe a crystal can be used to split the beam!
https://indico.cern.ch/event/325836/session/0/contribution/3/material/slides/1.pdf

More on the list ?

- A 7 TeV beam can be used for direct calibration
, Gamma-400 calorimeter, LHC-f.
- Sub-shower in air-shower are mainly due to pions
- A special crystal can be used to focus secondaries from the interaction of primary 7 TeV proton from a thin target

A focusing crystal can intercept a fraction of the secondaries

p

(Today's) Conclusions

- Measurements with "low" energy probes at CERN are possible
- SPS North Area lines (up to 400 GeV) are usually available to users.
- LHC 7 TeV proton (or ion) beam could be extracted parasitically with a crystal in the next coming years.
- Identify crucial measurements is a key-point
- Reproduce UHECR air-shower in lab
- Measure anti-proton production from He
- Muon production
- I believe CR physics community should be proactive and make realistic proposals
- Re-use of existing apparatus would certainly help.

Additional back-up slides

erc

- UA9 leader in producing and testing crystals
- H8 beam test, X-ray diffraction, RBS, ...

Anticlastic deformation to impart bending
Also quasi-mosaicity used (wider crystals)

Dechanneling effects

- Nuclear (L_{n}) and electronic $\left(\mathrm{L}_{e}\right)$ dechanneling affecting

$$
\begin{aligned}
& N_{c h}(z) \approx N_{\text {unstable }} e^{-\frac{z}{L_{n}}}+N_{\text {stable }} e^{-\frac{z}{L_{e}}} \\
& \mathrm{~L}_{\mathrm{n}} \sim \operatorname{sqrt}(\mathrm{p}) \text { : at } 7 \mathrm{TeV} \mathrm{~L}_{\mathrm{n}} \sim 0.6 \mathrm{~cm} \\
& L_{e} \sim p \quad \text { at } 7 \mathrm{TeV} \mathrm{~L}_{\mathrm{e}} \sim 400 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { E. Bagli et al., Eur. Phys. J. C (2014) 74:2740 }
\end{aligned}
$$

 channeling efficiency

Channeling efficiency versus Rc

- Experiment (H8 and SPS):

- Si bent crystal ($L=0.2 \mathrm{~cm}$)
- (1 10) plane
- $400 \mathrm{GeV} / \mathrm{c}$ protons

$$
\begin{gathered}
\mathrm{Si}(110): \\
\mathrm{R}_{\mathrm{c}}=12 \mathrm{~m} \text { at } \mathrm{E}=7 \mathrm{TeV} \\
\mathrm{Ge}(110): \\
\mathrm{R}_{\mathrm{c}}=7 \mathrm{~m} \text { at } \mathrm{E}=7 \mathrm{TeV}
\end{gathered}
$$

, ~1 mrad deflection requires $\sim 12 \mathrm{~cm}$ long Si crystal (or 7 cm long Ge crystal)

- Much longer than what UA9 tested and used so far

Established fabrication technique
a) Starting material: (110) silicon wafer
b) LPCVD deposition of silicon nitride thin layer
c) Silicon nitride patterning (photolithography)
d) Etching of Si in KOH solution, silicon nitride acts as masking layer
e) Silicon strips release Revisitation needed!
f) Removal of silicon nitride

Silicon crystal production and testing

- Anisotropic chemical etching
, Sub-surface damage free crystal
Lateral surface (AFM)

University of Ferrara and INFN Ferrara

- High grade titanium holder for SPS and LHC crystals
- For a very long crystal ($\sim 10 \mathrm{~cm}$), a new holder needs to be designed!
- Assisted curvature with tensile layer deposition
- INFN Ferrara labs has infrastructures and know-how
- IHEP U-70 (Biryukov et al, NIMB 234, 23-30)
- 70 GeV protons,

50 ms spills of 10^{14} protons every 9.6 s ,
several minutes irradiation
channeling efficiency unchanged.

- SPS North Area - NA48 (Biino et al, CERN-SL-96-30-EA)
- 450 GeV protons,
2.4 s spill of 5×10^{12} protons every 14.4 s , one year irradiation, 2.4×10^{20} protons $/ \mathrm{cm}^{2}$ in total, channeling efficiency reduced by 30%.
- HRMT16-UA9CRY (HiRadMat facility, November 2012):
* 440 GeV protons, up to 288 bunches in $7.2 \mu \mathrm{~s}$,

1.1×10^{11} protons per bunch (3×10^{13} protons in total)
\rightarrow comparable to asynchronous beam dump in LHC
no damage to the crystal after accurate visual inspection more tests planned to assess possible crystal lattice damage accurate FLUKA simulation of energy deposition and residual dose
- Layout optimized with complete tracking simulation
- Vertical crystal: DCUM 19918, horizontal crystal: DCUM 19842
- Crystal parameters:
bending angle $50 \mu \mathrm{rad}$, length 0.4 cm
- local cleaning inefficiency is reduced by $5 \div 10$ times in the dispersion suppressor

- Produce crystals with a large bending angle (~mrad) [2015]
- Even larger bending for SPS test
- Test them in the North Area to characterize their performance
- Reuse UA9 expertise and infrastructure [end of 2015 - beg 2016]
- Design smart absorber [2015]
- Build it (2016) and then test on North Area [2016-2017]
- Cross section measurement of interest for CR physics might be possible at H8
- Propose a scenario for the halo extraction in the SPS, using the UA9 existing infrastructure (LSS5 region) [2015]
- Test and characterize the halo extraction scheme in the SPS [2016-2017]
- Extracted beam characterization with BLM and Cherenkov detector [after H8 validation]
- Propose of a scenario for an extraction test in LHC [2018]

Hadronic shower parameters

SPS extraction test in LSS_{5}

Cry@RP1 $=10$ mrad $-\mathrm{E}=120 \mathrm{GeV}-$ Emittance $=14.7 \mathrm{e}-9-$ Crystal $) 6$ sigma

Location of the extraction test-bed in SPS under study.

Vertical extraction (towards to the ceiling of the tunnel) might be possible

A broader physics reach, AFTER@LHC

- There is a wider physics case for a LHC fixed target experment
\square High precision study of hadronic physics with either proton or ions extracted and sent to different targets

- large negative $-x_{F}$ reactions in proton-nucleus collisions;
- the charm and beauty content of the proton;
- the quark and gluon Sivers effect and the proton spin;
- the hard probes of quark-gluon plasma close to the QCD phase transition;
- the large- x gluon distribution in the proton, neutron, deuteron and nuclei;
- This goes beyond CRYSBEAM activity
- A more complex (and bigger) experiment is needed!
- But crystal extraction could be the first piece for this
- A Letter of Intent for CERN is in preparation

Conceptual experiments

Extracted beam

Segmented absorber
Active layers (pixelated?)
to measure shower properties

> Q: are shower properties
sensitive to cross section on absorber material?
(test with FLUKA and SYBILL)

Extracted beam

Target material can be changed.
Measure
(in a narrow solid angle) exclusive cross-section (anti proton, B, C,..)
Detector can be moved at different angles

Conceptual experiments (2)

Incoming flux detector "diffracted particle"

Dispersive region of the accelerator: Detected diffracted particles

Use the accelerator as a spectrometer to measure the momentum of diffractive particles
With two stations, measure angle and momentum
Direct measurement of diffractive cross section on absorber materials

More on particle fluence from He (FLUKA)

