Measurement of Higgs couplings to fermions in the ATLAS experiment

Frank Filthaut Radboud University & Nikhef, Nijmegen for the ATLAS Collaboration

Contents:

- $H \rightarrow \tau^{+}\tau^{-}$ (<u>1501.04943</u>, subm. to JHEP)
- $H \rightarrow \mu^+\mu^-$ (1406.7663, PL B738 (2014) 68)
- $H \rightarrow b\overline{b}$ (1409.6212, JHEP01 (2015) 69)
- $t\bar{t}(H \rightarrow \gamma\gamma)$ (1409.3122, PL B740 (2014) 222)

Not discussing $t\overline{t}H \rightarrow b\overline{b}$: discussed in detail by J. Montejo Interpretation in terms of coupling constants: A. Armbruster

XXIX Rencontres de Physique, I-7 March 2015

Ni<mark>kh</mark>ef

PEACH SCHNAPPS VODKA BOURBON SOAKED CHERRY GELATIN BLOOD ORANGE ITALIAN SODA

HIGGS BOSON aka " The GOD PARTICLE " is a hypothetic.] massive scalar clementaly particle predicted to exist by Standard Model of particle physics, Only particle that has yet be observed

Motivation

BEH discovery essentially involved bosons only (even if in part through couplings to fermions) is opportune to focus on fermions now!

- extra particles in loop?
- non-SM couplings?

Туре-2 2	2HDM:
----------	-------

SM particle type	h coupling	H coupling	A coupling
up-type quarks	$\frac{\cos \alpha}{\sin \beta}$	$rac{\sin lpha}{\sin eta}$	$\cot eta$
down-type quarks, ℓ^{\pm}	$-\frac{\sin lpha}{\cos eta}$	$\frac{\cos \alpha}{\cos \beta}$	tan β
W, Z bosons	$\sin(\beta - \alpha)$	$\cos(eta-lpha)$	0

Motivation

BEH discovery essentially involved bosons only (even if in part through couplings to fermions) is opportune to focus on fermions now!

Challenging analyses

- most sensitive (H $\rightarrow \tau^+\tau^-$, bb) use all the available sophistication (MVA)
- analyses use full Run-1 dataset; will show essentially no 2011 results

$H \rightarrow \tau^+ \tau^-$

High production cross section & decent branching fraction... but many τ decay modes involving v present significant complications

Strategy: after preselection, optimise separately in

- TlepTlep, TlepThad, ThadThad decay modes
- VBF, boosted ggF (pT(H) > 100 GeV) production modes

H f f

$H \rightarrow \tau^+ \tau^-$

High production cross section & decent branching fraction... but many τ decay modes involving v present significant complications

Strategy: after preselection, optimise separately in

- TlepTlep, TlepThad, ThadThad decay modes
- VBF, boosted ggF (pT(H) > 100 GeV) production modes

Tools:

- Missing Mass Calculator: under-constrained system improving m_{ττ} measurement
- "embedding": in data Z/γ* → μ⁺μ⁻
 events (m_{µµ} >40 GeV), replace µ with simulated τ
- BDT analyses in all 6 categories
 - exploiting VBF/boosted event kinematics

$H \rightarrow \tau^+\tau^-$ (2)

Н

H → τ⁺τ⁻ (3)

Results extracted using profile likelihood ratio fits

$$\lambda(\mu) = L\left(\mu, \hat{\vec{\theta}}(\mu)\right) / L\left(\hat{\mu}, \hat{\vec{\theta}}\right)$$
global maximum of L

assumed signal strength best-fit nuisance parameters for given μ

Dominant uncertainties:

- jet energy scale & resolution ($\leq 10\%$, mostly signal)
- T_{had} identification (≤ 7%, signal + bg)
- higher-order QCD corrections (~ 10% VBF signal, ~20% boosted ggF signal)

H → τ⁺τ⁻ (4)

H f Ī

H → τ⁺τ⁻ (5)

Results:

grand combination:

 $\mu = 1.43^{+0.27}_{-0.26}(\text{stat.})^{+0.32}_{-0.25}(\text{syst.}) \pm 0.09(\text{theory})$

separate VBF / ggF signal strengths:

 $\mu_{ggF} = 2.0 \pm 0.8 (ext{stat.})^{+1.2}_{-0.8} (ext{syst.}) \pm 0.3 (ext{theory})$

 $\mu_{VBF+VH} = 1.24^{+0.49}_{-0.45}(stat.)^{+0.31}_{-0.29}(syst.) \pm 0.08(theory)$

observed discovery significance:
 4.5σ (expected: 3.4σ)

$H \rightarrow \mu^+\mu^-$

"Simple" analysis but made difficult by low branching fraction and overwhelming $Z/\gamma^* \rightarrow \mu^+\mu^-$ background

- categories similar to $H \rightarrow \tau^+\tau^-$: VBF / 3 separate $p_T(H)$ bins
- result: observed μ < 7.0 (95% CL) (expected: μ < 7.2)

H → bb

Due to QCD $b\overline{b}$ background, little hope to observe in ggF production; use W/Z associated production.

"Simple" topology but separate analyses in many categories!

- leptonic W/Z decays: $Z \rightarrow vv$, $W \rightarrow Iv$, $Z \rightarrow II$ (I = e, μ)
- events with 2 or 3 jets (with $|\eta| < 2.5$, pT > 20 GeV)
- 2 pT(V) regions (120 GeV boundary)
 - 0-lepton: p_T(Z) > 100 GeV (trigger)

2-lepton channel: kinematic fit to improve mass resolution

0, I-lepton channels: dedicated b-jet correction

0-lepton channel: improve multijet rejection using both calorimeter & track based E_T (miss)

• consistency check: $\Delta \phi(\mathbf{p}_T(miss), \mathbf{E}_T(miss)) < \pi/2$

Analysis binned in discriminant output of b-jet tagger with improved c-jet rejection (after loose b-jet requirement):

Loose (80%), Medium (70%), Tight (50%)

H → bb (2)

Н

H f Ī

H → bb (3)

Extensive background modelling required (only small multijet background estimated using data driven methods)

- SHERPA modelling of $p_T(W)$ distribution improved by reweighting $\Delta \phi(j_1, j_2)$
- applied to W+I, W+cl

- similar reweighting carried out for (SHERPA) Z+jets background
- $\Delta \phi(j_1, j_2)$ reweighted for Z+I; directly $p_T(Z)$ for Z+b, Z+c
- $p_T(t)$ spectrum in $t\bar{t}$ reweighted to bring it in agreement with measurement

H → bb (4)

BDT output distributions in most discriminating 0-, 1-, 2-lepton regions

Systematic uncertainties obtained mostly from generator comparisons (bg), theory (signal). Dominant contributions and impact on signal strength estimate:

- W+HF m_{jj} shape (0.06), W+bl/bb ratio, W+bb normalisation, W+HF p_T(V) shape (0.05), Z+bl/bb ratio, b-jet energy resolution (0.04)
- signal: effect μ_F , μ_R scale variations on acceptance (0.04)

H → bb (5)

- Profile likelihood fit (as in $H \rightarrow \tau^+\tau^-$ analysis):
 - $\mu = 0.51^{+0.31}_{-0.30}(\text{stat.})^{+0.25}_{-0.22}(\text{syst.})$
- significance: I.4σ (expected: 2.6σ)
- μ < 1.2 at 95% CL (expected: 0.8)

Cross-check analysis done searching for W/Z+Z \rightarrow bb events

5 times larger cross section; softer p_T(Z) spectrum

14

H f

H → bb (5)

- Profile likelihood fit (as in $H \rightarrow \tau^+\tau^-$ analysis):
 - $\mu = 0.51^{+0.31}_{-0.30} (\text{stat.})^{+0.25}_{-0.22} (\text{syst.})$
- significance: I.4σ (expected: 2.6σ)
- μ < 1.2 at 95% CL (expected: 0.8)

Cross-check analysis done searching for $W/Z+Z \rightarrow bb$ events

- 5 times larger cross section; softer p_T(Z) spectrum
- separately trained BDTs (SMW/Z+H "background")
- results:
 - $\mu_{VZ} = 0.74 \pm 0.09$ (stat.) ± 0.14 (syst.)
 - simultaneous fit of μ, μ_{VZ} does not affect the measured μ (correlation between systematics only 35%)

Process provides tree level access to Htt coupling

- H $\rightarrow \gamma\gamma$ decay mode: tiny branching fraction (2.3 · 10⁻³), but very low background which can be estimated from m_{YY} sidebands (except contributions from other H $\rightarrow \gamma\gamma$ decays)
- selection kept inclusive to allow tHqb and tHW contributions
 sensitivity to relative sign of Htt and HWW couplings, due to destructive interference in tHW final state

- similar interference for tHqb production
- parametrise Htt coupling using additional factor Kt
- loose tt selection for both I+jets ("leptonic") and hadronic final states
 - but tight photon selection

Н

Results obtained from unbinned fit to $m_{\gamma\gamma}$ spectrum assuming signal + exponential background

tt H (2)

best-fit signal strength:

 $\mu = 1.4^{+2.3}_{-1.4}(\text{stat.})^{+0.6}_{-0.3}(\text{syst.})$

- not far less precise than result obtained using $t\overline{t}H \rightarrow b\overline{b}$ (1.5 ± 1.1)
- fixing other $H \rightarrow \gamma \gamma$ contributions to SM: $\mu_{t\bar{t}H} = 1.3^{+2.5}_{-1.7} (\text{stat.})^{+0.8}_{-0.4} (\text{syst.})$
- μ_{ttH} < 6.7 at 95% CL

Interpretation of μ_{ttH} in terms of K_t :

- also interference with W boson loop in H $\rightarrow \gamma\gamma$
- significant constraints imposed especially on negative values:
 - $-1.3 < \kappa_t < 8.0$ at 95% CL

Conclusion & outlook

After the BEH boson's discovery, tremendous progress has been made in constraining its couplings to fermions

No significant deviations from SM predictions observed yet... but the search continues!

- systematic uncertainties becoming important in many analyses
- but higher statistics promised for Run 2 will definitely help to improve precision

(incomplete) list of channels

Backup

$H \rightarrow \tau^+\tau^-$: generators

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MC monorator	$\sigma \times BR \ [pb]$					
Signal $(m_H = 125 \text{ GeV})$	MC generator	$\sqrt{s} = 8$ TeV					
ggF, $H \to \tau \tau$	Powheg [36–39]	1.22	NNLO+NNLL	[42-47, 78]			
	+ Pythia8 [40]						
VBF, $H \to \tau \tau$	Powheg + Pythia8	0.100	(N)NLO	[51-53, 78]			
$WH, H \to \tau \tau$	Pythia8	0.0445	NNLO	[56, 78]			
$ZH, H \to \tau \tau$	Pythia8	0.0262	NNLO	[56, 78]			
De al-massa d	MC momenter	$\sigma \times BR$	$\sigma \times BR [pb]$				
Background	MC generator	$\sqrt{s} = 8$ TeV					
$W(\to \ell \nu), (\ell = e, \mu, \tau)$	Alpgen [71]+Pythia8	36800	NNLO	[79, 80]			
$Z/\gamma^*(\to \ell\ell),$	ALPGEN+PYTHIA8	3910	NNLO	[79 80]			
$60 \text{ GeV} < m_{\ell\ell} < 2 \text{ TeV}$		0010		[15,00]			
$Z/\gamma^*(\to \ell\ell),$	ALPGEN+HERWIG [81]	13000	NNLO	[79, 80]			
$10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}$		10000		[,]			
VBF $Z/\gamma^*(\to \ell\ell)$	Sherpa [82]	1.1	LO	[82]			
$t\bar{t}$	POWHEG + PYTHIA8	253^{\dagger}	NNLO+NNLL	[83-88]			
Single top : Wt	POWHEG + PYTHIA8	22^{\dagger}	NNLO	[89]			
Single top : s -channel	POWHEG + PYTHIA8	5.6^{\dagger}	NNLO	[90]			
Single top : t -channel	AcerMC [74]+Pythia6 [67]	87.8^{\dagger}	NNLO	[91]			
$q\bar{q} \rightarrow WW$	Alpgen+Herwig	54^{\dagger}	NLO	[92]			
$gg \rightarrow WW$	GG2WW [73]+Herwig	1.4^{\dagger}	NLO	[73]			
WZ, ZZ	Herwig	30^{\dagger}	NLO	[92]			
$H \to WW$	same as for $H \to \tau \tau$ signal	4.7^{\dagger}					

$H \rightarrow \tau^+\tau^-$: embedding

In data $Z/\gamma^* \rightarrow \mu^+\mu^-$ events (m_{µµ} > 40 GeV), replace μ with simulated τ • also requires removing energies deposited in the calorimeter by the muon Technical test replacing the real muon with a simulated one

$H \rightarrow \tau^+ \tau^-$: BDT variables

Variable		VBF			Boosted]
variable	$\tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{ m had} au_{ m had}$	$\tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{ m had} au_{ m had}$	
$m_{ au au}^{ m MMC}$	•	•	٠	•	٠	•]
$\Delta R(au_1, au_2)$	•	•	●		●	•	
$\Delta \eta(j_1, j_2)$	•	•	٠]
m_{j_1, j_2}	•	•	•				
$\eta_{j_1} \times \eta_{j_2}$		•	•				
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•				
$\operatorname{Sum} p_{\mathrm{T}}$					٠	•	_
$p_{\rm T}^{7_1}/p_{\rm T}^{7_2}$					•	•	_
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	•	•	_
m_{ℓ,ℓ,j_1}				•			_
$\frac{m_{\ell_1,\ell_2}}{2}$				•			
$\Delta \phi(\ell_1,\ell_2)$				•			$\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}$
Sphericity				•			$S^{\alpha\beta} = \frac{1}{\sum \vec{\mathbf{p}} ^2}$
$p_{\mathrm{T}}^{\circ_1}$				•			$\sum j P_j $
				•			_
$E_{\mathrm{T}}^{\mathrm{mass}}/p_{\mathrm{T}}^{c_2}$				•			_
m_{T}		•			•		-
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•						-
$C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•						
$C_{\eta_1,\eta_2}(\eta_\ell)$		•					$\int C_{n_1,n_2}(n) \equiv \exp\left(\frac{-4}{(n_1+n_2)}\right)$
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•						$\left((\eta_1 - \eta_2)^2 \right)^{-1} \left((\eta_1 - \eta_2)^2 \right)^{-1} $
$C_{\eta_1,\eta_2}(\eta_{\tau_1})$			•				-
$C_{\eta_1,\eta_2}(\eta_{ au_2})$			•				

$H \rightarrow \tau^+ \tau^-$: fake τ contribution

Substantial contribution from fake Thad candidates I data driven estimates

- T_{lep}T_{had} decay mode: fake contribution from
 W/Z+jets, ttbar, multijet (MJ) events
- "fake factors" applied to samples with T_{had} satisfying only looser criteria, as a function of p_T(T) & separately for I-/3-prong T_{had}
 - different for quarks and gluons in evaluated for separate contributions, combined weighted by expected fractions
- similar procedure for Thad Thad mode, modelled using Thad failing isolation / opposite-charge requirements

Small fake lepton candidate contribution

 estimated from sample with inverted isolation requirement

$H \rightarrow \tau^+\tau^-$: validation of BDT response

BDT outputs validated in regions with significant $Z \rightarrow \tau^+ \tau^-$ / fake τ_{had} contributions

- $m_{II}, m_{IT} \sim M_Z \text{ region } (T_{Iep}T_{Iep}, T_{Iep}T_{had})$
- m_{ττ}(MMC) sidebands (T_{had}T_{had})

$H \rightarrow \tau^+\tau^-$: results

$H \rightarrow b\overline{b}$: generators

Process	Generator
$Signal^{(\star)}$	
$q\overline{q} \to ZH \to \nu\nu bb/\ell\ell bb$	PYTHIA8
$gg ightarrow ZH ightarrow u u bb/\ell\ell bb$	powheg+pythia8
$\underline{\qquad q\overline{q} \to WH \to \ell\nu bb}$	PYTHIA8
Vector boson + jets	
$W \to \ell \nu$	Sherpa 1.4.1
$Z/\gamma * o \ell \ell$	Sherpa 1.4.1
$Z \to \nu \nu$	Sherpa 1.4.1
Top-quark	
$\overline{t\overline{t}}$	POWHEG+PYTHIA
<i>t</i> -channel	AcerMC+pythia
s-channel	POWHEG+PYTHIA
Wt	POWHEG+PYTHIA
$Diboson^{(\star)}$	POWHEG+PYTHIA8
WW	POWHEG+PYTHIA8
WZ	POWHEG+PYTHIA8
	POWHEG+PYTHIA8

$H \rightarrow b\overline{b}$: cuts & BDT variables

Variable	Dijet-mass analysis						ariate analysis	Variable	0-Lepton	1-Lepton	2-Lepton
Common selection							$p_{\mathrm{T}}v$		Х	Х	
$p_{\rm T} v \; [{\rm GeV}]$	0–90	$90^{(*)}-120$	120-160	120 - 160 160 - 200 > 200			> 120	$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×
$\Delta R(\mathrm{jet}_1,\mathrm{jet}_2)$	0.7–3.4	0.7–3.0	0.7 - 2.3	0.7 - 1.8	< 1.4	> 0.7 (p	$v_{\rm T}v < 200 {\rm ~GeV}$	$p_{\mathrm{T}}^{b_1}$	×	×	×
		0-lep	oton selection	n				$p_{\mathrm{T}}^{b_2}$	×	×	×
$p_{\rm T}^{\rm miss}$ [GeV]		> 30		> 30			> 30	m_{bb}	×	×	×
$\Delta \phi(E_{\rm T}^{\rm miss}, \vec{p}_{\rm T}^{ m miss} vec)$		$<\pi/2$		$<\pi/2$			$<\pi/2$	$\Delta R(b_1, b_2)$	×	×	×
$\min[\Delta\phi(E_{\rm T}^{\rm miss}, {\rm jet})]$	NU	_		> 1.5		NU	> 1.5	$ \Delta E_{\mathrm{T}}a(b_1, b_2) $	×		×
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{dijet})$		> 2.2	> 2.8				> 2.8	$\Delta \phi(V, bb)$	×	×	×
$\sum_{i=1}^{N_{jet}=2(3)} p_{T}^{jet_{i}} [GeV]$		> 120 (NU)	> 120 (150)				> 120 (150)	$ \Delta E_{\mathrm{T}}a(V,bb) $			×
i=1		See text	_				_	H_{T}	×		
1-lenton selection							$\min[\Delta \phi(\ell, b)]$		×		
						$m_{ m T}^W$		×			
H_{T} [GeV]		> 180 -				> 180	_	$m_{\ell\ell}$			×
$E_{\rm T}^{\rm miss}$ [GeV]		- > 20 > 50				_	> 20	$MV1c(b_1)$	×	×	×
2-lepton selection								$MV1c(b_2)$	×	×	×
$m_{\ell\ell} \; [\text{GeV}]$	GeV] 83-99						71-121		Only	y in 3-jet ev	rents
$E_{\rm T}^{\rm miss}$ [GeV]	< 60							$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	Х	X
								m_{bbj}	×	×	×

$H \rightarrow b\overline{b}$: results

0.2 -0.15 -0.1 -0.05 0.05 0.1 0.15 0 Impact of nuisance parameters -W+bb, W+cc m_{ii} shape Yields scale factors $(p_{\tau}^{V} > 120 \text{ GeV})$ W+bl to W+bb normalisation $(p_{-}^{V} > 120 \text{ GeV})$ W+bb normalisation W+HF p_{τ}^{V} shape (3-jet) Signal acceptance (parton shower) Z+bl to Z+bb normalisation (2-jet) Scale factor Process b-jet energy resolution $t\overline{t}$ 0-lepton 1.36 ± 0.14 Z+bb, Z+cc m_{ii} shape $t\bar{t}$ 1-lepton 1.12 ± 0.09 $t\bar{t}$ 2-lepton 0.99 ± 0.04 Jet energy resolution Wbb 0.83 ± 0.15 Dilepton tt normalisation 1.14 ± 0.10 Wcl W+HF p_{τ}^{V} shape (2-jet) Zbb 1.09 ± 0.05 Zcl 0.88 ± 0.12 Z+bb normalisation O Jet energy scale 1 b-jet tagging efficiency 4 ttbar high p_{τ}^{V} normalisation Pull: $(\hat{\theta} - \theta_0)/\Delta \theta$ **ATLAS** Normalisation $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 20.3 \text{ fb}^{-1}$ +1 σ Postfit Impact on $\hat{\mu}$ -1 σ Postfit Impact on $\hat{\mu}$ m_µ=125 GeV 11111

-2 -1.5

-1

-0.5

0

0.5

1.5

1

2

$H \rightarrow b\overline{b}$: results

Separate 7, 8 TeV measurements; combination of 0-lepton, 2-lepton channels

H → bb (4)

BDT output distributions in most discriminating 0-, I-, 2-lepton regions

Systematic uncertainties mostly determined from generator comparisons:

- tt, single top: normalisations (floating for 2-jet, 3/2 ratio constrained to 20%), separately for 0+1 and 2-lepton channels; mbb and pt(V) shapes
- Z+jets: 2-jet Z+bb, Z+cl floated in fit; 3/2 ratios constrained to 20% (26%); non-bb fractions in Z+HF constrained to 12%; half of Δφ(j1, j2) / full pT(Z) reweighting
- W+jets: half of (full) Δφ(j1, j2) reweighting for W+I, W+cl (W+HF); mbb and pT(W) shapes; non-bb fractions in W+HF constrained to 35% (W+bl), 12% (W+bc, cc)
- signal: scale, PDF, parton shower