Recent Exotic Searches with CMS

Conor Henderson (University of Alabama) On behalf of the CMS Collaboration

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile, 1-7 March 2015

BSM Searches in Many Final States

(Borrowing the metaphor from F. Riva this morning)

 Our goal when searching for BSM physics in many final states ...

BSM Searches in Many Final States

• Try to eat as much as we can!

Inspired by F. Riva this morning

Outline of This Talk

BSM Physics - trying to eat as much as we can ...

Heavy Resonances – Brief Overview

- Heavy resonance would be unambiguous signal of new physics
- Many possible BSM sources; a common one is:
- ♦ Z':
 - mediator of some new U(1) gauge field
 - frequent signature of BSM enlarged symmetry groups breaking down to SM= SU(3)_C x SU(2)_L x U(1)_Y
- (Can also interpret high-mass spectrum in terms of nonresonant excesses, eg Large Extra Dimensions (ADD), via virtual graviton exchange)

Dijet Resonance Search (EXO-12-059)

- Jet $p_T > 30$ GeV; inclusive jets and b-tagged jets categories
- Uses "wide jets" less sensitive to gluon radiation
- No evidence for resonance in dijet mass

Conor Henderson

arXiv:1501.04198

Dijet Limits

 Can set limits on many possible new physics scenarios producing dijets

 Example:
 "coloron" (new massive stronglyinteracting gauge boson) excluded with masses below
 3.7 TeV

Search for New Physics in Dilepton Mass

Dielectron and dimuon channels

arXiv:1412.6302

- Resonant signal in dilepton mass possible from Z' or Randall-Sundrum graviton; non-resonant excesses from Large Extra Dimensions (ADD) or Contact Interactions
- Main background from Drell-Yan; also ttbar and diboson processes produce two real leptons in final state

University of Alabama

Conor Henderson

Dilepton Limits (EXO-12-061)

3

4

5

6

n_{ED}

2

ττ in eµ Decay Channel (EXO-12-046)

• $\tau\tau$ in eµ decay channel, with Missing E_T (MET) from v

- ◆ 95% CL: Z'_{SSM} M>1.3 TeV
- ADD Extra dim.:

Limit	GRW	HLZ - M_S GeV				
	Λ_T (GeV)	n=3	n=4	n=5	n=6	n=7
Observed (K factor $= 1.3$)	2800	3330	2800	2530	2350	2230

Conor Henderson

Top-Antitop Resonance in Dilepton Channel (B2G-12-007)

- $tt \rightarrow bWbW, W \rightarrow lv$
- Identify b-jets by secondary vertex
- Consider both narrow and wide resonances
- Exclusion limits:
- Narrow Z', M>1.5 TeV
- → Wide Z', M>2.0 TeV

Z-Higgs Resonance Search (EXO-13-007)

- $Z \rightarrow qq, H \rightarrow \tau \tau$
- $Z \rightarrow qq$ reconstructed as single "Z-jet"
- τ pair from H highly
 boosted; e, μ and
 hadronic decay channels
 all considered
- Exclude σ x BR of 27.8 fb – 0.9 fb, for M_{ZH} 800-2500 GeV

Dark Matter at the LHC

- Dark Matter (existence inferred from galaxy rotation curves, gravitational lensing, etc) - comprises 23% of the universe, but is not compatible with any SM particle
- But a stable particle of mass ~0.1-1 TeV and weak-scale interactions would be a good DM candidate – the "WIMP Miracle"!
- Several BSM theories predict such a particle ... could we observe DM production in LHC collisions?

Bullet Cluster

Monophoton Search (EXO-12-047)

- Photon E_T > 145 GeV; MET > 140 GeV; veto leptons
- Dominant background at high MET: $Z(\rightarrow vv)\gamma$
- Data found to be consistent with background prediction ...
- (Can also interpret as limit on ADD: real graviton emission)

Monophoton Limits

- Translate results to limit on DM-nucleon scattering cross-section, compare with DM direct detection experiments
- Spin-independent and spin-dependent DM interactions

Conor Henderson

University of Alabama

Long Lived Particle Searches

 Long-lived new physics can give novel detector signatures – new reconstruction and analysis techniques needed for these

Stopped R-Hadrons (EXO-12-036)

- Long-lived colored particle (gluino or top squark) can form 'R-hadron'; large dE/dx, can come to rest in detector, then decay at some later time
- Signature: large energy deposit in calorimeter, in time interval *between* LHC collisions!
- Background: brem from cosmic or beam halo muons; noise

Period	Trigger livetime (h)	$N_{ m noise}^{ m bkg}$	$N_{ m cosmic}^{ m bkg}$	$N_{ m halo}^{ m bkg}$	$N_{ m total}^{ m bkg}$	$N^{\rm obs}$
2010	253	$0.0\substack{+2.3\-0.0}$	4.8 ± 3.6		$4.8\substack{+4.3\\-3.6}$	2
2012	281	$0.0\substack{+2.6 \\ -0.0}$	5.2 ± 2.5	8.0 ± 0.4	$13.2\substack{+3.6 \\ -2.5}$	10

 Data events consistent with background – assuming R-hadron interaction model, exclude gluino M <1000 GeV, top squark M <525 GeV, for lifetimes 1µs – 1000s

arXiv:1501.05603

CMS EXO Results Summary

Conor Henderson

University of Alabama

18

B2G Results Summary

CMS Searches for New Physics Beyond Two Generations (B2G) 95% CL Exclusions (TeV)

Conor Henderson

Summary

- ◆ LHC Run 1 complete, ~20 fb⁻¹ collected at 8 TeV
- CMS has performed many searches for BSM physics, results can be found at:
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
- https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G
- Many final states explored, but no evidence yet for Beyond-SM physics

- LHC Run 2: increase collision energy to 13 TeV and increase rate of accumulating data
- The race to discover new physics beyond the Standard Model ...

LHC, 7 TeV? LHC, 8 TeV? Tevatron? New Physics Finish Line

LHC, 7 TeV?LHC, 8 TeV?

New Physics Finish Line

Conor Henderson

Conor Henderson

1st Generation Leptoquarks (EXO-12-041)

• In evjj channel, with selection optimised for LQ mass=650 GeV, 2.6 sigma excess of data over bkg – spread out, no peak in m_{ej}

ττ in eµ Decay Channel (EXO-12-046)

Dilepton trigger 17+8 GeV; offline e,mu pT>20 GeV; MET> 20 GeV

To more effectively distinguish between lower mass backgrounds from tau lepton pairs from new particle production, the visible tau decay products and the E_T are used to reconstruct the mass:

$$M(\mu, e, \not\!\!E_T) = \sqrt{(E_\mu + E_e + \not\!\!E_T)^2 - (\overrightarrow{p_\mu} + \overrightarrow{p_e} + \not\!\!\!E_T)^2}.$$
(5)

Table 1: Number of observed events in data and estimated background events, for different $M(\mu, e, \not\!\!\!E_T)$ mass ranges. The errors on the estimated background events represent the statistical uncertainty from the MC samples.

$M(\mu, e, \not\!\!\!E_T)$ (GeV)	[50,100]	[100,150]	[150,200]	[200,250]	[250,300]
Expected bkg	$3480{\pm}120$	4250 ± 130	1010 ± 70	396 ± 19	230 ± 24
Data	3428	4296	1000	388	198
$M(\mu, e, \not\!\!\!E_T)$ (GeV)	[300,400]	[400,600]	[600,900]	[900,1500]	[0,1500]
$M(\mu, e, \not\!\!E_T)$ (GeV) Expected bkg	[300,400] 217±13	[400,600] 82±5	[600,900] 20±4	[900,1500] 2.7±1.6	[0,1500] 9680±190

Z-Higgs Resonance Search (EXO-13-007)

Dark Matter + ttbar (B2G-14-004)

- Scalar DM-quark interaction small due to light quark mass
- $\mathcal{L}_{\rm int} = \frac{m_q}{M_*^3} \bar{q} q \bar{\chi} \chi$
- Motivates search for $DM + top quark pair \rightarrow ttbar + MET$
- Increases LHC sensitivity to scalar DM interaction

Conor Henderson

Displaced Dilepton Pairs (EXO-12-037)

- Pair of charged leptons from a displaced vertex would indicate long-lived particle decay
- Seek displaced vertex lepton pairs 12 std dev from primary vertex – no such events seen in data <u>arXiv:1411.6977</u>

Color-Octet, Weak-triplet (EXO-12-007)

- Color-octet, weak-triplet, neutral scalar boson Θ^0
- Pair-produced,
- decaying to bb and Z+g

New BSM Fermion States

- "Vector-like" quarks:
 - 4th generation quarks, but "non-chiral" (SM quarks are chiral, ie only LH state couples to Weak interaction)
- Heavy Majorana
 Neutrinos:
 - A heavy neutrino which is its own anti-particle

Fermilab 95-759

Vector-like Quark (B2G-12-017)

- ◆ Consider TT → bWbW and QQ → qWqW (one W hadronic, other W leptonic decay)
- Hadronic W highly boosted use 'jet-pruning'

Exclude T, M<912 GeV and Q, M<788 GeV</p>

Conor Henderson

Heavy Majorana Neutrino (EXO-12-057)

- Signature: samesign dimuon pair (only possible if heavy neutrino N is Majorana) +2jets
- Set limits on V_{µN}, mixing element
 of N with SM v_µ, as function of N
 mass

Heavy Majorana Neutrino (EXO-12-057)

- $\mu pT > 20,15 \text{ GeV}, 2 \text{ jets } pT > 20 \text{ GeV}$
- Veto 3rd µ, to suppress WZ bkg; veto b-tag jet to suppress ttbar bkg
- Additional refinement based on on-shell Ws, for low-mass and high-mass separately
- Major bkgs are: WZ, ZZ etc; W+jets, dijets, with jet faking muon (via heavy flavour decay, usually); the contribution from charge-mismeasured muons at CMS is negligible for this pT range

CMS Detector

Conor Henderson

- LHC Run 2: increase collision energy to 13 TeV and increase rate of accumulating data
- We look forward to exciting times in this new frontier!

