Determination of the Top-Quark Mass from the m_{lb} Distribution

in Dileptonic Top-Quark Pair Events at \sqrt{s} = 8 TeV

Jan Kieseler 05.03.2015

- Motivation -

- Event Selection & m_{lb} Definition-
 - Extraction Method & Results-

- Inclusive tt cross sections used to extract $m_{t,pole}$ at NNLO
- Taking advantage of different slope of $\sigma_{pred}(m_t)$ and $\sigma_{meas}(m_t)$

Next step:

(PLB 728 (2014) 496)

- Extract m_t from differential cross sections
- Possibly more sensitive to m_t, more clear theoretical interpretation
- Step to simultaneous m_t , pdf, α_s extraction
- \rightarrow Observable sensitive to m_t , measurement + prediction

Reference: CMS PAS-TOP-14-014

- Full 2012, 8 TeV dataset (19.7 fb⁻¹)
- Signal: MadGraph+Pythia (7 mass-points)
- Selection
 - ► ≥2 opposite charged isolated leptons **e**µ
 - Remove low $m_{ll} < 20 \text{ GeV}$
 - ▶ ≥2 high p_T jets
 - ▶ ≥1 b-tagged jet

Definition on **generator** and **reconstruction** level

 $m_{lb,min}$: smaller m_{lb} of 2 combinations

- Leading b-jet: smaller JES uncertainties
- Lepton kinematics known to high precision
- ➡ Visible phase space (vis. PS)

- leading b-quark from top / leading b-jet
 |η| < 2.4, p_T > 30 GeV
 - leptons from top (e/µ/tau(→e,µ)) / selected oppositely charged lepton pair
 - |η| < 2.4, p_T > 20 GeV

Observable $m_{lb,min}(2)$

- Good data/MC agreement
- Low background
- Only small contribution of migrations from outside visible PS

 τ decays, efficiencies included in response matrix

$$\vec{x}_{reco} = \mathcal{L} \cdot M^{resp} \quad \vec{x}_{pred}$$

• Strong correlation between reconstructed and generated m_{lb,min}

- Compare reconstruction level distributions (MadGraph + detector sim.)
- Compare other prediction to data on reconstruction level?
- Fold theory:

$$M_{ij}^{resp} = N_{ij} / \sum_{j=0}^{n} N_{ij}$$

 $\vec{x}_{reco} = \mathcal{L} \cdot M^{resp} \quad \vec{x}_{pred}$

- Separate matrix for each systematic variation and m_t
 - Detector modeling uncertainties
 - Signal modeling uncertainties (reconstruction efficiencies)

- No additional unfolding/regularization uncertainties
- No stat. correlations between bins of reconstructed distribution
- Here: Fold prediction within visible phase space
 - Reconstruction level prediction can be directly compared to measured points

Method Overview

prediction: either or + data

- For each m_{lb} bin:
 - Derive cont. mt dependence of pred (fit)
 - Construct χ^2 (m_t) per bin
- Combine bins
 - No stat correlations $\rightarrow \text{sum } \chi^2 \text{ over bins}$
- Determine m_t
 - Repeat for each syst. variation

Likelihood

rate shape & rate shape

 m_t

- Fit mt-dependence of prediction, N_{pred}. with 2nd order polynomial
 - Includes backgrounds
 - Use statistical uncertainty (mostly background) from central point $\rightarrow \sigma_{\text{pred}}$
 - Parametrization uncertainties not included here $(\rightarrow \text{see systematics})$
- Data yield N_{data}: constant with σ_{data} ۲

• Define estimator $\chi^2 = \frac{(N_{\text{pred}} - N_{\text{data}})^2}{\sigma_{\text{pred}}^2 + \sigma_{\text{data}}^2}$

- Extract top mass from minimum of $\chi^2(m_t)$
- For total rate or in bins of any ۲ distribution (m_{lb})

- MadGraph+Pythia + background processes
- Compare data to different m_t hypothesis in prediction
 - for shape only, shape & rate and rate-only
- Repeated for each systematic uncertainty

- Use MCFM to simulate m_{lb,min} distribution in. vis PS
- Fold to detector level and extract top mass
 - normalized (rate underestimated)
- Pure MCFM NLO / LO
- NLO production + decay 1
 - Real and virt. corrections in decay & production

NLO production + decay 2

- Real and virt. corrections in production only (Closest to MadGraph ME level)
- Plain LO (no FSR)

• Uncertainties similar to MadGraph+Pythia

- M_{lb} shows low m_t -sensitivity wrt. higher orders in production
- Overall consistent results from "shape", "shape & rate" and "rate" based extraction

Dominant uncertainties (experimental/theory):

- Rate:
 - normalization uncertainties, JES
 - signal normalization
- Shape & rate:
 - partial cancellation of JES uncertainties
 - signal normalization
- Shape \rightarrow smallest total uncertainty
 - JES
 - Q² scale

	Fitted m_t [GeV]
Fit method	from m ^{min} lb
shape+rate	$173.1 \substack{+1.9 \\ -1.8}$
rate	$173.7 \substack{+3.5 \\ -3.4}$
shape	$172.3 \substack{+1.3 \\ -1.3}$
shape	$171.5 \substack{+1.1 \\ -1.1}$
shape	$171.4 \substack{+1.0 \\ -1.1}$
	Fit method shape+rate rate shape shape shape shape

Summary

- Extracted top mass from reco-level m_{lb} distributions & total rate with MadGraph+Pythia
 - From shape: mt = 172.3 ±1.3 GeV
 - All "MadGraph+Pythia mass"-values consistent
 - Partial cancellation of uncertainties in shape+rate extraction
- Extracted using folded MCFM LO/NLO
 - No unfolding/regularization effects
 - Low sensitivity of m_{lb} to production mechanism

BACKUP

- Based on fitted $N_{pred}(m_t)$ (per bin)
- Data toys:
 - Random yield (Poisson) around N_{pred}
 - Same statistics as data
- Prediction toys:
 - Signal
 - Random yield (Poisson) with tt MC statistics
 - Uncorrelated for each mass point
 - Background
 - Random yield (Poisson) with background MC statistics
 - Correlated for each mass point
 - Scaled back to luminosity and added
- Extract m_t and evaluate $m_{t,in}$ vs. $m_{t,out}$ (x 10⁵)
- ⇒No bias
- Stat uncertainties estimated correctly

