Hadronic Light-by-Light Scattering and the Muon g-2

Peter Stoffer

JHEP **09** (2014) 091 [arXiv:1402.7081 [hep-ph]]

in collaboration with G. Colangelo, M. Hoferichter and M. Procura

Helmholtz-Institut für Strahlen- und Kernphysik University of Bonn

4th March 2015

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile

1

Outline

- Introduction
- 2 Standard Model vs. Experiment
- 3 Dispersive Approach to HLbL Scattering
- 4 Conclusion and Outlook

Overview

- 1 Introduction
- 2 Standard Model vs. Experiment
- 3 Dispersive Approach to HLbL Scattering
- 4 Conclusion and Outlook

Magnetic moment

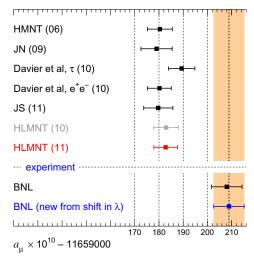
relation of spin and magnetic moment of a lepton:

$$\vec{\mu}_{\ell} = g_{\ell} \frac{e}{2m_{\ell}} \vec{s}$$

 g_{ℓ} : Landé factor, gyromagnetic ratio

- Dirac's prediction: $g_e = 2$
- anomalous magnetic moment: $a_{\ell} = (g_{\ell} 2)/2$
- helped to establish QED and QFT as the framework for elementary particle physics
- today: probing not only QED but entire SM

a_n : comparison of theory and experiment

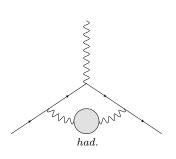


→ Hagiwara et al. 2012

Overview

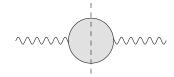
- Introduction
- 2 Standard Model vs. Experiment Hadronic Vacuum Polarisation Hadronic Light-by-Light Scattering Summary and Prospects
- 3 Dispersive Approach to HLbL Scattering
- 4 Conclusion and Outlook

Leading hadronic contribution: $\mathcal{O}(\alpha^2)$



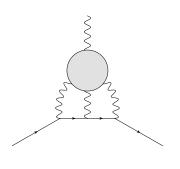
- problem: QCD is non-perturbative at low energies
- first principle calculations (lattice QCD) may become competitive in the future
- current evaluations based on dispersion relations and data

Leading hadronic contribution: $\mathcal{O}(\alpha^2)$



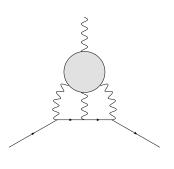
- basic principles: unitarity and analyticity
- direct relation to experiment: total hadronic cross section $\sigma_{\rm tot}(e^+e^- \to \gamma^* \to {\rm hadrons})$
- · at present: dominant theoretical uncertainty
- can be systematically improved: dedicated e^+e^- program (BaBar, Belle, BESIII, CMD3, KLOE2, SND)

Higher order hadronic contributions: $\mathcal{O}(\alpha^3)$ Hadronic light-by-light (HLbL) scattering



- hadronic matrix element of four EM currents
- up to now, only model calculations
- lattice QCD not yet competitive

Higher order hadronic contributions: $\mathcal{O}(\alpha^3)$ Hadronic light-by-light (HLbL) scattering



- uncertainty estimate based rather on consensus than on a systematic method
- will dominate theory error in a few years
- "dispersive treatment impossible"

a_{μ} : theory vs. experiment

- theory error completely dominated by hadronic effects
- discrepancy between Standard Model and experiment $\sim 3\sigma$
- · hint to new physics?
- new experiments (FNAL, J-PARC) aim at reducing the experimental error by a factor of 4

Overview

- Introduction
- 2 Standard Model vs. Experiment
- 3 Dispersive Approach to HLbL Scattering
 Dispersive Evaluation of HVP
 Lorentz Structure of the HLbL Tensor
 Mandelstam Representation
- 4 Conclusion and Outlook

Leading hadronic contribution: $\mathcal{O}(\alpha^2)$

Photon hadronic vacuum polarisation function:

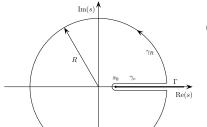
$$\sim -i(q^2g_{\mu\nu}-q_{\mu}q_{\nu})\Pi(q^2)$$

Unitarity of the *S*-matrix implies the optical theorem:

$$\operatorname{Im}\Pi(s) = \frac{s}{e(s)^2} \sigma_{\text{tot}}(e^+e^- \to \gamma^* \to \text{hadrons})$$

Dispersion relation

Causality implies analyticity:



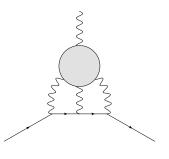
Cauchy integral formula:

$$\Pi(s) = \frac{1}{2\pi i} \oint_{\gamma} \frac{\Pi(s')}{s' - s} ds'$$

Deform integration path:

$$\Pi(s) - \Pi(0) = \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im}\Pi(s')}{(s' - s - i\epsilon)s'} ds'$$

How to improve HLbL calculation?



- "dispersive treatment impossible": no!
- relate HLbL to experimentally accessible quantities
- make use of unitarity, analyticity, gauge invariance and crossing symmetry

The HLbL tensor

- object in question: $\Pi^{\mu\nu\lambda\sigma}(q_1,q_2,q_3)$
- a priori 138 Lorentz structures
- gauge invariance: 95 linear relations

 ⇒ (off-shell) basis: 43 independent structures
- six dynamical variables, e.g. two Mandelstam variables

$$s = (q_1 + q_2)^2, \quad t = (q_1 + q_3)^2$$

and the photon virtualities q_1^2 , q_2^2 , q_3^2 , q_4^2

· complicated analytic structure

HLbL tensor: Lorentz decomposition

Problem: find a decomposition

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_i T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

with the following properties:

- Lorentz structures $T_i^{\mu\nu\lambda\sigma}$ manifestly gauge invariant
- scalar functions Π_i free of kinematic singularities and zeros

HLbL tensor: Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

apply gauge projectors to the 138 initial structures:

$$I_{12}^{\mu\nu} = g^{\mu\nu} - \frac{q_2^{\mu}q_1^{\nu}}{q_1 \cdot q_2}, \quad I_{34}^{\lambda\sigma} = g^{\lambda\sigma} - \frac{q_4^{\lambda}q_3^{\sigma}}{q_3 \cdot q_4}$$

- remove poles taking appropriate linear combinations
- Tarrach: no kinematic-free basis of 43 elements exists
- extend basis by additional structures taking care of remaining kinematic singularities

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

$$\Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3) = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i(s, t, u; q_j^2)$$

- · Lorentz structures manifestly gauge invariant
- · crossing symmetry manifest
- scalar functions Π_i free of kinematics
 - ⇒ ideal quantities for a dispersive treatment

Master formula: contribution to $(g-2)_{\mu}$

$$a_{\mu}^{\mathrm{HLbL}} = e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}(q_{1}, q_{2}; p) \hat{\Pi}_{i}(q_{1}, q_{2}, -q_{1} - q_{2})}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m_{\mu}^{2}][(p - q_{2})^{2} - m_{\mu}^{2}]}$$

- \hat{T}_i : known integration kernel functions
- $\hat{\Pi}_i$: linear combinations of the scalar functions Π_i
- five loop integrals can be performed with Gegenbauer polynomial techniques

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam)
 representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam)
 representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$
 one-pion intermediate state:

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam)
 representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

two-pion intermediate state in both channels:

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam)
 representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

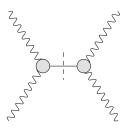
two-pion intermediate state in first channel:

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam)
 representation allows us to split up the HLbL tensor:

$$\Pi_{\mu\nu\lambda\sigma} = \Pi^{\pi^0\text{-pole}}_{\mu\nu\lambda\sigma} + \Pi^{\mathsf{box}}_{\mu\nu\lambda\sigma} + \bar{\Pi}_{\mu\nu\lambda\sigma} + \dots$$

neglected: higher intermediate states

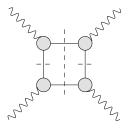
Pion pole



- input the doubly-virtual and singly-virtual pion transition form factors $\mathcal{F}_{\gamma^*\gamma^*\pi^0}$ and $\mathcal{F}_{\gamma^*\gamma\pi^0}$
- dispersive analysis of transition form factor:

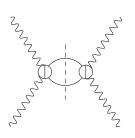
→ Hoferichter et al., EPJC 74 (2014) 3180

Box contributions



- simultaneous two-pion cuts in two channels
- analytic properties correspond to sQED loop
- q^2 -dependence given by multiplication with pion vector form factor $F_{\pi}^V(q^2)$ for each off-shell photon (\Rightarrow 'FsQED')

Rescattering contribution



- neglect left-hand cut due to multi-particle intermediate states in crossed channel
- two-pion cut in only one channel
- expansion into partial waves
- unitarity relates it to the helicity amplitudes of the subprocess $\gamma^* \gamma^{(*)} \to \pi \pi$

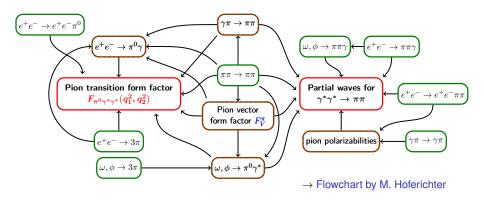
Overview

- Introduction
- 2 Standard Model vs. Experiment
- 3 Dispersive Approach to HLbL Scattering
- 4 Conclusion and Outlook

Summary

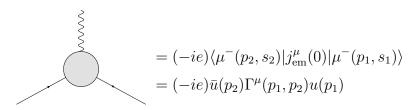
- our dispersive approach to HLbL scattering is based on fundamental principles:
 - gauge invariance, crossing symmetry
 - unitarity, analyticity
- we take into account the lowest intermediate states: π^0 -pole and $\pi\pi$ -cuts
- relation to experimentally accessible (or again with data dispersively reconstructed) quantities
- ullet a step towards a model-independent calculation of a_μ
- numerical evaluation is work in progress

A roadmap for HLbL



Backup

Interaction of a muon with an external electromagnetic field



 $\Gamma^{\mu}(p_1,p_2)$: vertex function

Lorentz decomposition:

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) - \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2)$$

Form factors depend only on $k^2 = (p_1 - p_2)^2$.

Lorentz decomposition:

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) - \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2)$$

Form factors depend only on $k^2 = (p_1 - p_2)^2$.

electric charge or Dirac form factor, $F_E(0) = 1$

Lorentz decomposition:

$$\Gamma^{\mu}(p_1,p_2)=\gamma^{\mu}F_E(k^2)-irac{\sigma^{\mu
u}k_
u}{2m}F_M(k^2) \ -rac{\sigma^{\mu
u}k_
u}{2m}\gamma_5F_D(k^2)+\left(\gamma^{\mu}+rac{2mk^{\mu}}{k^2}
ight)\gamma_5F_A(k^2)$$
 Form factors depend only on $k^2=(m-n)^2$

Form factors depend only on $k^2 = (p_1 - p_2)^2$.

magnetic or Pauli form factor, $F_M(0) = a_\mu$

Lorentz decomposition:

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) - \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2)$$

Form factors depend only on $k^2 = (p_1 - p_2)^2$.

electric dipole form factor, $F_D(0)$ gives the CP-violating EDM

Lorentz decomposition:

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_E(k^2) - i \frac{\sigma^{\mu\nu} k_{\nu}}{2m} F_M(k^2) - \frac{\sigma^{\mu\nu} k_{\nu}}{2m} \gamma_5 F_D(k^2) + \left(\gamma^{\mu} + \frac{2mk^{\mu}}{k^2}\right) \gamma_5 F_A(k^2)$$

Form factors depend only on $k^2 = (p_1 - p_2)^2$.

anapole form factor, P-violating

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$	
BNL E821	116592091	63	→ PDG 2013
QED total	116 584 718.95	0.08	→ Kinoshita et al. 2012
EW	153.6	1.0	
LO HVP	6949	43	→ Hagiwara et al. 2011
NLO HVP	-98	1	→ Hagiwara et al. 2011
NNLO HVP	12.4	0.1	→ Kurz et al. 2014
LO HLbL	116	40	→ Jegerlehner, Nyffeler 2009
NLO HLbL	3	2	→ Colangelo et al. 2014
Hadronic total	6982	59	
Theory total	116 591 855	59	

	$10^{11} \cdot a_{\mu}$	$10^{11} \cdot \Delta a_{\mu}$	
BNL E821	116592091	63	→ PDG 2013
$QED\ \mathcal{O}(\alpha)$	116140973.32	0.08	
$QED\ \mathcal{O}(\alpha^2)$	413217.63	0.01	
QED $\mathcal{O}(\alpha^3)$	30141.90	0.00	
$QED\ \mathcal{O}(lpha^4)$	381.01	0.02	
$QED\ \mathcal{O}(\alpha^5)$	5.09	0.01	
QED total	116584718.95	0.08	→ Kinoshita et al. 2012
EW	153.6	1.0	
Hadronic total	6982	59	
Theory total	116 591 855	59	

Model calculations of HLbL

Table 13 Summary of the most recent results for the various contributions to $a_u^{\mathrm{LbL;had}} \times 10^{11}$. The last column is our estimate based on our new evaluation for the pseudoscalars and some of the other results.

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	-	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π, K loops + other subleading in N_c	-	-	-	0 ± 10	-	-	-
axial vectors	$2.5{\pm}1.0$	$1.7 {\pm} 1.7$	-	$22\!\pm 5$	-	$15{\pm}10$	$22\!\pm 5$
scalars	-6.8 ± 2.0	-	-	-	-	$-7\!\pm7$	$-7\!\pm2$
quark loops	$21\!\pm3$	$9.7{\pm}11.1$	-	-	-	2.3	$21\!\pm3$
total	83±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39

→ Jegerlehner, Nyffeler 2009

- pseudoscalar pole contribution most important
- pion-loop second most important
- differences between models, large uncertainties