Heavy quark measurements with ATLAS

Julie Kirk Rutherford Appleton Laboratory, STFC on behalf of the ATLAS collaboration

Julie Kirk, Rutherford Appleton Laboratory

m(π⁺ π⁻ Υ(1S)) [MeV]

ATLAS experiment

The second

For B physics measurements require excellent tracking capabilities and muon identification

• Muon Spectrometer

- |η|<2.7
 Toroid B-Field, average ~0.5T
 Muon Momentum resolution
- $\sigma/p < 10\%$ up to ~ 1 TeV

•Si strips,

Transition Radiation Tracker (TRT)

•Used for Tracking and Vertexing:

and lifetime measurements

Precision momentum

• $\sigma/p_T \sim 3.4 \times 10.4 p_T + 0.015$ for ($|\eta| < 1.5$)

ATLAS data sample

ATLAS B-physics programme and trigger strategy

ATLAS is a general purpose detector – main focus is on high pT discovery physics but also has a very strong dedicated B physics programme.

B-physics programme concentrates on low p_T di-muon signatures:

> Onia studies (J/ $\psi \rightarrow \mu^+\mu^-$, $\Upsilon \rightarrow \mu^+\mu^-$, etc.)

> $B \rightarrow J/\psi(\mu\mu)X$, search for new states, mixing and CP violation studies

> Rare and semi-rare B decays $B \rightarrow \mu \mu(X)$

Trigger on low p_T (4,6 GeV) di-muon

- 2 muons at Level1
- > Confirmed in High Level Trigger
- Then require vertex fit and mass cuts

➤ Maintained low p_T triggers in 2012 by introducing "Barrel" and "Barrel-only" triggers.

Large samples of events recorded for the Bphysics programme

Trigger	Mass window	No. of events (M)
2mu4_DiMu	1.4 – 14 GeV	27
2mu4_Jpsimumu	2.5 – 4.3 GeV	14
2mu4_Bmumu	4 – 8.5 GeV	3.7
2mu4_Upsimumu	8 – 12 GeV	9.1

Quarkonium Production

Quarkonium production gives unique window on QCD

Experimental input from LHC experiments necessary to inform future direction of theory

Several new studies:

- $\chi_c \rightarrow J/\psi \gamma$ (JHEP 1407 (2014) 154)
- $\psi(2s) \rightarrow J/\psi \pi^+\pi^-$ (JHEP 1409 (2014) 79)

Common J/ ψ selection:

- p_T(μ⁺,μ⁻) > 4 GeV
- Muons must be trigger-matched
- $\chi^2 / n.d.f (J/\psi) < 15$

Not covered here:

- $J/\psi \rightarrow \mu\mu$ (<u>Nucl. Phys. B850 (2011) 387</u>)
- Υ→μμ (<u>Phys. Rev. D87 (2013) 052004</u>)

Charmonium: $\chi_c \rightarrow J/\psi \gamma$

Charmonium: $\chi_c \rightarrow J/\psi \gamma$

$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

 k_{T} factorisation under estimates $\psi(2s)$ production (correlated to over estimate of χ_{c}) NLO NRQCD provides best description

All predictions give good description of data.

Associated vector boson plus quarkonium production

- Huge LHC luminosities provide quarkonia samples produced in association with additional objects: other quarkonia, vector bosons, jets, top.....
- Two production mechanisms:
 - Single parton scattering (SPS) : objects from same diagrams
 - Double parton scattering (DPS) : objects from a separate hard scatter in same protonproton collision

 Event by event these are indistinguishable. Try to find observables to disentangle them (expect differences in e.g. Δy and opening angle)

- Results for:
 - J/ψ + W(μν) (<u>JHEP 04(2014) 172</u>).
 - > J/ψ + Z(µµ or ee) (Submitted to EPJC, <u>arXiV:1412:6428</u>)

- > J/ψ : leading muon $p_T > 4$ GeV, $p_T(J/\psi) > 8.5$ GeV, $|\eta(J/\psi)| < 2.1$
- → W: $p_T(\mu) > 25 \text{GeV}$, $E_t^{\text{miss}} > 20 \text{GeV}$, $m_T(W) > 40 \text{GeV}$
- > $Z : p_T(ll) > 25 (15) \text{ GeV, } m(Z) = PDG(m_Z) \pm 10 \text{ GeV}$

Candidates

J/ψ Pseudo-proper Time [ps]

J/ψ pseudo-proper time [ps]

$J/\psi(prompt) + W$

$J/\psi + Z$

Julie Kirk, Rutherford Appleton Laboratory

$J/\psi + Z$

Search for $B_c^+(2S)$ excited states

- > Spectrum and properties of B_c^+ predicted by theory (NRQCD and lattice calculations)
- > No excited states of B_c^+ observed previously.
- Cannot distinguish 2S₀ and 2S₁ (miss soft gamma & mass resolution)
- Search for cascade decay of $B_c^+(2S)$ to $B_c^+(1S)$ and two pions where $B_c^+(1S) \rightarrow J/\psi \pi^+$.

Phys. Rev. Lett. 113(2014) 212004

Event selection

$B_c^+(2S)$ observation

Extended unbinned fit of Q-value distribution:

 $Q(B_c^+\pi^+\pi^-) = m(B_c^+\pi^+\pi^-) - m(B_c^+) - 2m(\pi^+)$

- Signal: Gaussian
- Background: 3rd order polynomial
- Significance calculated using toy studies to account for "look elsewhere effect"
 - Combined significance is 5.2σ
- Mass = 6842 ± 4 (stat.) ± 5 (syst) MeV

consistent with predicted mass of $B_c^+(2S)$

Search for X_b in $\pi^+\pi^-\Upsilon(1S)$

Phys. Lett. B740 (2015) 199

- > Heavy-quark symmetry suggests existence of X_b analogous to the X(3872) observed in $\pi^+\pi^-J/\psi$
- Predicted mass ~10.5 GeV
- > Search in $\pi^+\pi^-\Upsilon(1S)$

Summary

ATLAS has collected a large di-muon sample during Run 1

Presented latest new heavy flavour results:

- $\chi_c \rightarrow J/\psi \gamma$
- $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$
- Observation of associated production of vector boson plus J/ψ
- $B_c^+(2S)$ observation
- Search for $X_b \rightarrow \pi^+ \pi^- \Upsilon(1S)$

Other results still in pipeline:

- B_s mixing (see talk by A.Wharton)
- В→µµ
- •

Looking forward to much more data in Run 2!!

Backup

$\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

J/ψ + Z : differential cross-sections

