QCD and Vector Boson + jets measurements with ATLAS

Les Rencontres de Physique de la Vallee d'Aoste, La Thuile, March 2015

Kristof Schmieden, on behalf of the ATLAS collaboration

The Summary at the Beginning

35 pb

njet ≥ 1

O--

njet ≥ 3

njet \geq 4

njet ≥ 5

njet ≥ 6

0

njet ≥ 7

0

Ζ

0

0

0

Kristof Schmieden

Motivation: jets and V+jets

- Jet inclusive measurement:
 - QCD dominated
 - sensitive pQCD effects PDFs, ...
- Jet production in association with W/Z bosons is dominated by strong interactions:
 - Number of jets:
 - Sensitive to pQCD effects \rightarrow parton shower
 - Jet transverse momentum
 - Sensitive to higher order ME, QCD & EWK!
 - Angular separation and invariant mass of leading jets
 Sensitive to higher order ME & pQCD effects
- Clean leptonic signature of V decay

Motivation: Ratio Measurements σ(W+jets) / σ(Z+jets)

- Probes kinematic differences of jet-system recoiling against W or Z
- Many uncertainties cancel!
 - Experimental:
 - Positively correlated uncertainties (Energy scales / backgrounds / Jet uncertainties)
 - Prediction:
 - Scale & PDF uncertainties
 - Parton shower / hadronization

- W + jets cross section (Accepted by EPJC; arXiv:1409.8639) (Sep. 2014)
- W + jets/Z + jets cross section ratio (Eur. Phys. J. C (2014) **74**:3168)
- Z + b-jets cross section (JHEP10(2014)141) (Nov. 2014)
- Inclusive Jet cross section (arXiv:1410.8857) (Oct. 2014)
- Differential 3 Jet measurement (arXiv:1411.1855) (Nov. 2014)
- Z + jets cross section (JHEP 07 (2013) 032) (not discussed)
- W +b-jets cross section (JHEP 06 (2013) 084)
- W +c-jets cross section (JHEP 05 (2014) 068)

• All shown results are obtained using the data measured in 2011 (4.6fb⁻¹ @ 7 TeV)

Theory Predictions - overview of tools

• Several Monte Carlo generators used to calculate predictions

• Alpgen:

- Multiparton LO ME generator for SM processes
- Special emphasis on multijet final states: explicitly takes **helicity correlations** of intermediate gauge bosons and final state particles into account
- PS by external program
- Sherpa
 - Multiparton LO ME, provides complete hadronic final states, sophisticated ME/PS merging
- BlackHat + Sherpa for PS
 - Evaluates QCD one-loop matrix elements for up to 4 final state jets

• HEJ

- All-order summation of perturbative terms
- Any number of hard jets > 2, jet rates (up to 4 jets) fully matched to tree-level accuracy.

• MEPS@NLO

- Merge resumed logs from PS with fixed order ME calculation
- Jets evolve with PS, cross section accurate to Born level
- NLOJET
 - NLO pQCD (fixed order) calculations, including hadronisation and electroweak corrections

Results for W+jets and Ratio W/Z + jets measurements

Event Selection

arXiv:1409.8639 & Eur. Phys. J. C (2014) **74**

• ₩→lv

- Exactly 1 lepton
 - p_T > 25GeV,|η| < 2.4 / 2.47 (μ/e)
- E_T^{miss} > 25 GeV
- m_T > 40 GeV

• Jets:

- p_T > 30 GeV
- |y| < 4.4
- Removed if overlapping with lepton $\Delta R > 0.4$

• Z—ll

- Exactly 2 leptons with opposite charge
 - p_T > 20GeV, |η| < 2.4 / 2.47 (μ/e)
- $\Delta R(I,I) > 0.2$
- 66 ≤ m_{ll} ≤ 116 GeV
- Jets:
 - p_T > 30 GeV
 - |y| < 4.4
 - Removed if overlapping with lepton $\Delta R > 0.4$

Inclusive number of jets

Ratio measurement

 $(W(\rightarrow hv))/(Z(\rightarrow l^{+}\bar{l})) + jets$

SHERPA

/// Data, √s=7 TeV, 4.6 fb

BLACKHAT+SHERPA

ALPGEN+HERWIG

 $(\sigma_{W+N_{jets}})/(\sigma_{Z+N_{jets}})$

16

ATLAS

anti-k, jets, R=0.4,

 $p_{\perp}^{j} > 30 \text{ GeV}, |y| < 4.4$

BlackHat and ALPGEN give good description of data for N_{jets} < 5

• Trend toward large N_{jets} (Alpgen & Sherpa)

 still compatible with data within the large errors

 In ratio measurement: deviation of Sherpa prediciton becomes significant

 $\mathcal{U} \to \ell \nu$

Transverse Momentum of Leading Jet (≥ 1 jet)

10

- Alpgen and Sherpa describe data well
- BH and LoopSim underestimate high pT cross section

arXiv:1409.8639 & Eur. Phys. J. C (2014) 74

 $\mathcal{U} \to \ell \nu$

Transverse Momentum of Leading Jet (≥ 2 jets)

- Pronounced offset in HEJ prediction
- Ratio is modeled well, except for very low pT

 $(W(\rightarrow hv))/(Z(\rightarrow l^{+}\bar{l})) + \ge 2$ jet

SHERPA

/// Data, √s=7 TeV, 4.6 fb

— BLACKHAT+SHERPA ALPGEN+HERWIG

Ratio measurement

ATLAS

anti-k, jets, R=0.4,

 $p_{\perp}^{j} > 30 \text{ GeV}, |y| < 4.4$

Angular separation of jets

- sensitive to hard parton radiation at large angles
 - ME / PS matching
- MEPS@NLO: trend at large separation • ALPGEN: trend over full range

 $\mathcal{U} \to \ell \nu$

arXiv:1409.8639 &

Eur. Phys. J. C (2014) 74

ALPGEN+HERWIG

– SHERPA

Ratio measurement ATLAS $(W(\rightarrow hv))/(Z(\rightarrow l^{+}\bar{l})) + \ge 2$ jet anti-k, jets, R=0.4, /// Data, √s=7 TeV, 4.6 fb — BLACKHAT+SHERPA $p_{-}^{j} > 30 \text{ GeV}, |y_{-}^{j}| < 4.4$

1.8

- Important BG for associated Higgs production with H \rightarrow bb and BSM models
- 2 schemes used in pQCD calculations: 4 and 5 flavors in initial state
 - (a) only existent in 5 flavor scheme
 - sensitive to b-quark PDF

Inclusive Jet Double Differential Measurement

Inclusive Jet Double Differential Measurement

arXiv:1410.8857

- Anti-kt reconstruction algorithm, radius R=0.4 (0.6)
- Jets calibrated using insitu methods
- $p_T > 100 \text{ GeV } \& |y| < 3$
- Data from 2011 and 2010 are consistent
- Larger dataset: extension to higher p_T values (2 TeV), reduces systematics

*р*_т [GeV]

NLOJET prediction matched well with double differential measured cross section

Kristof Schmieden

|y| < 0.3

 $0.3 \le |y| < 0.8$

 $0.8 \le |y| < 1.2$

Ratio

0.8

0.6

1.4

1.2

0.8

0.6

1.4

1.2

0.8

0.6

 10^{2}

Impact on PDFs

- Dominant systematic uncertainty:
 - Jet Energy Scale
- Data compared to NLOJET prediction with several different PDF sets (including corrections for non perturbative and electroweak effects):
 - Only ABM11 PDF shows significant deviations from measured values
 - Fairly good agreement for all other tested PDF sets
- Similar results for R=0.6
- Quantitative comparison including correlations of uncertainties
 - All information published

arXiv:1410.8857

ME+PS element generator vs. pQCD calculation

Comparison of Perugia 2011 and AUET2B tunes

arXiv:1410.8857

- Perugia tune yields consistently larger cross section prediction than AUET2B
- Shape well reproduced by POWHEG
- Similar Results for R=0.6

3 Jet Production

3 Jet Production

- Double differential measurement in Rapidity and tri-jet mass
- Dominating systematic uncertainty: JES
- Good agreement with prediction over 7 orders of magnitude!

Event Selection:

- Anti-k_t reconstruction algorithm, radius R=0.4 (0.6)
- Jets calibrated using insitu methods
- At least 3 jets with
 - $p_T > 50 \text{ GeV } \& |y| < 3$
 - leading jet: $p_T > 150 \text{ GeV}$
 - sub-leasing jet: $p_T > 100 \text{ GeV}$
- $|Y^*| = |y_1 y_2| + |y_2 y_3| + |y_1 y_3|$

arXiv:1411.1855

3 Jet Production - PDF impact

arXiv:1411.1855

- Similar picture to previous analysis
 - ABM11 PDF yield systematically lower predictions, in particular in low rapidity region
- Good agreement for R=0.4
- Shifted prediction/data ratio for R=0.6 towards lower values

Kristof Schmieden

Conclusions

 Inclusive Jet production and the association with Vector Bosons contain interesting physics!

- Many results from ATLAS
 - Few are shown:
 - W+jets: large sensitivity to higher order ME corrections, PS and merging technique. Still room for improvements!
 - W/Z + jets ratios: smaller uncertainties, well modeled by generators
 - Z+b-jets: sensitivity to PDFs and initial state description
 - Inclusive Jets: good agreement with fixed-order NLOpQCD calculations + corrections (non perturbative & EWK) and ME + matched PS
 - 3 Jet production: similar to inclusive Jets: **ABM11** PDF shows deviations from measurement in low Y* region; for R=0.6: ratio theory / data systematically lower compared to R=0.4

Promt Photon Production

- Promt, isolated photon production cross section
- Shape well described by Pythia and Herwig
- Absolute cross section predicted lower than measuremed
- PDF uncertainties become important for high E_T
- Good agreement with NLO pQCD predictions

Kristof Schmieden

Les Rencontres de Physique de la Vallee d'Aoste - March 2015

 $d \sigma / d \eta^{\gamma}$ [pb]

200

Theory/Data

Invariant di-jet mass

- Ratio well described by all generators
- Good description by HEJ for single channel

 $\mathcal{U} \to \ell \nu$

Ratio measurement

 $(W(\rightarrow h_{v}))/(Z(\rightarrow l^{\dagger}\bar{l})) + \ge 2$ jet

SHERPA

/// Data, √s=7 TeV, 4.6 fb

BLACKHAT+SHERPA

ALPGEN+HERWIG

ATLAS

anti-k, jets, R=0.4,

 $p_{-}^{j} > 30 \text{ GeV}, |y_{-}^{j}| < 4.4$

1.8⊢

1.6

1.4

Inclusive Jets - H_T

Inclusive Jets - Rapidity Leading Jet

Inclusive Jets Double Differential Measurement

ATLAS

 $|y| < 0.5 (\times 10^{\circ})$

 $0.5 \leq |\gamma| < 1.0 (\times 10^{-3})$

- Anti-kt reconstruction algorithm, radius R=0.6
- Jets calibrated using local hadronic calibration weights (LCW)
- $p_T > 100 \text{ GeV } \& |y| < 3$
- Data from 2011 and 2010 are consistent
- NLOJET prediction matched well with double differential measurement

anti-k, jets, R=0.6

L dt=4.5 fb⁻¹, √s=7 TeV

10⁷

Kristof Schmieden

Impact of PDFs

- Dominant systematic uncertainty:
 - Jet Energy Scale

- Data compared to NLOJET prediction with several different PDF sets (including corrections for non perturbative and electroweak effects):
 - Only ABM11 PDF shows significant deviations from measured values
 - Fairly good agreement for all other tested PDF sets
- Similar results for R=0.4

ME element generator vs. pQCD calculation

Comparison of Perugia 2011 and AUET2B tunes

Perugia tune yields consistently larger cross section prediction than AUET2B

- Shape well reproduced by POWHEG
- Similar Results for R=0.4

3 Jet Production - more PDFs

Kristof Schmieden

Electroweak production of V+jets

Motivation - EWK production

- Production via purely electroweak processes is rare
 - Mainly interested in:

Vector Boson fusion

Vector Boson scattering

- What we can learn from them?
 - Probe triple and quadratic gauge boson self-interactions
 - Can be used in a model independent approach to explore new physics, that modifies gauge boson self-interactions (anomalous couplings)
 - Probe the nature of the EW symmetry breaking, testing the unitarization in VV scattering by HVV contribution (VBS)
 - Understand irreducible background to Higgs and beyond-SM searches
 - Constrain MC modeling of QCD-initiated processes in VBF-like regions

Kristof Schmieden

Zjj:VBF - strategy of measurement

CERN

• Measure inclusive (QCD+EW) Zjj cross section and differential distributions in 5 fiducial regions with varying sensitivity to the EW component:

- 3 regions with simple topologies:
 - "baseline"
 - "high pT" and "high mass"
 probe impact of EW component
- 2 ad hoc selections:
 - "search region" and "control region"

• Extract electroweak component cross section from "search region", constraining background modeling (QCD Zjj) from "control region"

• Set limits on anomalous triple gauge couplings

Kristof Schmieden

Zjj:VBF - Results

- Electroweak production becomes important!
 - Overestimated in Sherpa
- Sherpa predicts harder mass spectrum
- Powheg is in good agreement with data

Kristof Schmieden

Limit on anomalous triple gauge coupling

• Zjj sensitive to TGC

 Sensitivity to new physics modifying gauge boson self-interaction

- Generic aTGC couplings parametrized by effective Lagrangian
 - 3 contributing couplings
 - $g_{1,Z}$, λ Z, κ Z

95% confidence intervals

aTGC	$\Lambda = 6 \text{ TeV (obs)}$	$\Lambda = 6 \text{ TeV} (\exp)$	$\Lambda = \infty \text{ (obs)}$	$\Lambda = \infty \ (\exp)$
$\Delta g_{1,Z}$	[-0.65, 0.33]	[-0.58, 0.27]	[-0.50, 0.26]	[-0.45, 0.22]
λ_Z	[-0.22, 0.19]	[-0.19, 0.16]	[-0.15, 0.13]	[-0.14, 0.11]

• Limits weaker but complementary than those from di-boson production

- Di-boson: all 3 bosons have time-like momentum
- Here 2 W have space-like momentum

Vector Boson scattering

CERN

- Strategy of the measurement is about the same as for EW Zjj:
 - Measure inclusive (QCD+EW) W[±]W[±]jj cross section in 2 fiducial regions
 - ("inclusive region" and "VBS region"): varying sensitivity to the EW component
- Extraction on the EW W[±]W[±]jj production from the "VBS region"
- Set limits on anomalous quadratic gauge couplings

Vector Boson Scattering

Kristof Schmieden

Electroweak prod.: evidence of VBS, sensitive to anomalous coupling no deviation from SM predictions observed