Theory Progress in Exotic Spectroscopy
 AD Polosa
 Sapienza University of Rome

Fact: Tetraquark mesons do exist

- Z(4.43) LHCb April 2014
- $Z_{c}(3.9)$ BESIII \& Belle 2013
- Z $Z_{c}(4.02)$ BESIII 2013

$$
B \rightarrow K^{+}\left(\psi(2 S) \pi^{-}\right)_{J^{P G}=1^{++}}
$$

- $Z_{b}(10.61)$ \& $Z_{b}(10.65)$ Belle 2012

Some authors elaborated alternative explanations in terms of effects like kinematical cusps, coupled channels etc...

- the seminar proceeds under the hypothesis that they are wrong

Fancy: Compact or Extended?

Another couple of facts

- Compact tetraquark models predicted charged states ~ 10 years ago Maiani et al. hep-ph/0412098, PRD
- But some of the predicted states have not (yet?) been found
- Molecular models do not provide predictions but provide explanations for supposedly tight, loose (and even unbound...) molecules
- But no convincing description of their production at hadron colliders at high pT

Prototypical Example: X(3872), JPC=1++

Discovered by Belle, 2003, and soon confirmed by CDF, BaBar, D0. Later observed at CMS and ATLAS. Produced in B meson decays and prompt, in hadron collisions.

4 CMS Collaboration arXiv:1302.3968
4 Measurement of the cross section ratio

Figure 1: The $\mathrm{J} / \psi \pi^{+} \pi^{-}$invariant-mass spectrum for $10<p_{\mathrm{T}}<50 \mathrm{GeV}$ and $|y|<1.2$. The lines represent the signal-plus-background fits (solid), the background-only (dashed), and the signal-only (dotted) components. The inset shows an enlargement of the $X(3872)$ mass region.

\section*{The X(3872) `fine tunings`}

The X(3872) appears to be very close to the DD* open charm threshold

$$
m_{D^{0}}+m_{D^{* 0}}=3872 \mathrm{MeV}
$$

The coincidence is really striking because the value is exactly matched. Actually in terms of mass there is another surprising 'coincidence' in the X case

$$
m_{J / \psi}+m_{\rho^{0}}=3872 \mathrm{MeV}
$$

The X decays in both channels, preferring the first one, and also decays into $J / \psi \omega$

$$
\frac{\mathcal{B}(X \rightarrow J / \psi \rho)}{\mathcal{B}(X \rightarrow J / \psi \omega)} \approx 1
$$

which is an strong hint of isospin violation

A loosely bound molecule

$$
\left.\begin{array}{c}
f(\alpha \rightarrow \beta)=-\frac{1}{8 \pi E} A_{\beta \alpha} \\
f(a b \rightarrow c \rightarrow a b)=-\frac{1}{8 \pi E} g^{2} \frac{1}{\left(p_{a}+p_{b}\right)^{2}-m_{c}^{2}} \\
m_{c} \simeq m_{a}+m_{b}-\varepsilon
\end{array}\right\}
$$

This has to be compared with the potential scattering for slow particles $(k a \ll 1)$ in an attractive potential U with a superficial level at $-\varepsilon(\varepsilon>0)$ - here $T \sim|\varepsilon|$

$$
\begin{gathered}
f(a b \rightarrow a b)=-\frac{1}{\sqrt{2 m}} \frac{\sqrt{\varepsilon}-i \sqrt{T}}{\varepsilon+T} \\
\varepsilon \simeq \frac{g^{4}}{512 \pi^{2}} \frac{m^{5}}{m_{a}^{4} m_{b}^{4}}
\end{gathered}
$$

A loosely bound molecule

For slow (ka<<1) spinless particles whose scattering can be described by an attractive shallow potential U with a (superficial) discrete level at - ϵ $(|\epsilon| \ll|\mathrm{U}|$ within $\mathrm{a}, \mathrm{U}(\infty) \rightarrow 0)$

$$
\epsilon=\frac{g^{4}}{512 \pi^{2}} \frac{M_{D} M_{D^{*}}}{\left(M_{D}+M_{D^{*}}\right)^{5}}
$$

If we consider a trasnition

$$
\left\langle D^{0} \bar{D}^{0 *}(\epsilon, q) \mid X(\lambda, P)\right\rangle=g \lambda \cdot \epsilon^{*}
$$

in the formula for ϵ one can substitute

$$
g^{2} \rightarrow g^{2} \frac{1}{3}\left(2+\frac{\left(M_{X}^{2}+M_{D^{*}}^{2}-M_{D}^{2}\right)^{2}}{4 M_{X}^{2} M_{D^{*}}^{2}}\right)
$$

assuming that the barycentric kin. energy is as small as the binding one

Precision measurement of $\varepsilon, \Gamma_{\chi}, \operatorname{Br}\left(\chi \rightarrow \mathcal{D D}^{*}\right)$

Any anti-deuteron at LHC?

A lot!!...
Indeed Alice has 30K antideuterons - In which pt range though?

MC Extrapolation

More data at higher pT would be needed for we can't rely on qcd at pT~1GeV

CMS cuts for the $\mathrm{X}: 100<p_{\text {Fol }}<50 \mathrm{GeV}{ }^{30}$

$$
|y|<2
$$

Barely Bound States in TeV Hadron Collisions?

Rescattering (FSI) by Pions

A. Esposito et al.

Expanding hadronization sphere
(a)

Plane $\pi-D$ rescattering
(b)

Rescattering (FSI) by Pions

The mechanism works: feed down from higher bins - but it does not help in the bins of interest (up to 100 MeV for the com relative momentum in the wold-be-molecule, k_{0})

Compact Tetraquarks

anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations (q qq), ($q q q q \bar{q}$), etc., while mesons are made out of ($\mathrm{q} \overline{\mathrm{q}})$, ($\mathrm{q} \mathrm{q} \overline{\mathrm{q}} \overline{\mathrm{q}})$, etc. It is assuming that the lowest

from a Gell-Mann's paper
on quark model

Large N_{c} and Tetraquarks

Following a paper by Witten on `1/N and Baryons` (see also S. Coleman’s lectures), tetraquarks should instantly fall apart into mesons.

However, as commented by S. Weinberg in a recent paper (PRL 110, 2013), this applies only at the leading order N2 disconnected diagram.

The leading order connected diagram has only one color loop.

Large N_{c} and Tetraquarks

which implies that the $4 q$ decay amplitude into two ordinary mesons can be $1 / \mathrm{N}^{1 / 2}$
This discussion has been enlarged by M. Knecht and S. Peris (arXiv:1307.1273) and further considered in three papers by T. Cohen and R. Lebed et al. (arXiv: 1401.1815, arXiv:1403.8090). According to them, tetraquark are not narrow because of $1 / \mathrm{N}$ counting but due to other effects.

On the other hand tetraquarks appear in the spectrum of QCD in the CorriganRamond large N limit ('larks' in the antifundamental) as narrow hadrons.

Diquarkonia

In 'type II' model, the spin interactions inside the diquark are assumed to dominate over all other possible pairings.
$H \approx 2 \kappa_{q \bar{q}}\left(s_{q} \cdot s_{\bar{q}}\right)$ type I Maiani, Piccinini, Polosa, Riquer, PRD71 (2005) $H \approx 2 \kappa_{q \bar{c}}\left(s_{q} \cdot s_{c}+s_{\bar{q}} \cdot s_{\bar{c}}\right)$ type II Maiani, Piccinini, Polosa, Riquer, PRD89 (2014)

Charged states and diquarkonia

$$
\begin{aligned}
& Z(4430) \rightarrow \psi(2 S) \pi^{-} \\
& Z(3900) \rightarrow J / \psi \pi^{-}
\end{aligned}
$$

See also the calculation by S. Brodsky, D. Hwang \& R. Lebed in a diquarkantidiquark model arXiv:1406.7281

$$
m(\psi(2 S))-m(J / \psi) \simeq m(Z(4430))-m(Z(3900))
$$

'A crucial consequence of a $Z(4430)$ charged particle is that a charged state decaying into $\mathrm{J} / \psi+\pi^{ \pm}\left(o r \eta_{c}+\rho^{ \pm}\right)$should be found around $3880 \mathrm{MeV}^{\prime}$

Taken from L. Maiani, A. D. P. and V. Riquer, arXiv:0708.3997 [hep-ph]. At that time there was no hint of $Z_{c}(3900)$ in data.

There is another state in between - the $Z_{c}(4025)$ also required by the diquark-antidiquark model. Both of them have been discovered in 2013 (BES)

What is the $S_{c c}$ in Z_{c} and $Z_{c}{ }^{\prime}$?

Focus on the heavy quark (pair) spin, which we assume to be conserved in strong interactions

$$
\begin{aligned}
& Z_{c}(3900) \rightarrow J / \psi\left(S_{c \bar{c}}=1\right) \pi^{-} \\
& Z_{c}(4025) \rightarrow h_{c}\left(S_{c \bar{c}}=0\right) \pi^{-}
\end{aligned}
$$

Things get more complicated when light quarks are involved as in the $\mathrm{D}^{*} \mathrm{D}^{*}$ decay.
One might conclude that the two light Z_{c} cannot be states with the heavy spin fixed to be equal to one but

$$
\begin{aligned}
& Z_{c}, Z_{c}^{\prime}=\left|S_{c \bar{c}}, S_{q \bar{q}}\right\rangle_{J} \neq|1,1\rangle_{1} \\
& Z_{c}, Z_{c}^{\prime} \sim|0,1\rangle \pm|1,0\rangle
\end{aligned}
$$

Are there $11,1>$ states?

Tetraquarks made of diquarks

In our schemes tetraquarks could be described in terms of heavy-light diquarks

$$
[c q]_{i}[\bar{c} \bar{q}]^{i}
$$

Diquark-antidiquark states might be formed in different spin combinations

	$c q \bar{c} \bar{q}$	$c \bar{c} q \bar{q}$	Resonance Assig.	Decays
0^{++}	$\|0,0\rangle$	$1 / 2\|0,0\rangle+\sqrt{3} / 2\|1,1\rangle_{0}$	$X_{0}(\sim 3770 \mathrm{MeV})$	$\eta_{c}, J / \psi+$ light mesons
0^{++}	$\|1,1\rangle_{0}$	$\sqrt{3} 2\|0,0\rangle-1 / 2\|1,1\rangle_{0}$	$X_{0}^{\prime}(\sim 4000 \mathrm{MeV})$	$\eta_{c}, J / \psi+$ light mesons
1^{++}	$1 / \sqrt{2}(\|1,0\rangle+\|0,1\rangle)$	$\|1,1\rangle_{1}$	$X_{1}=X(3872)$	$J / \psi+\rho / \omega, D D^{*}$
1^{+-}	$1 / \sqrt{2}(\|1,0\rangle-\|0,1\rangle)$	$1 / \sqrt{2}(\|1,0\rangle-\|0,1\rangle)$	$Z=Z(3900)$	$J / \psi+\pi, h_{c} / \eta_{c}+\pi / \rho$
1^{+-}	$\|1,1\rangle_{1}$	$1 / \sqrt{2}(\|1,0\rangle+\|0,1\rangle)$	$Z^{\prime}=Z(4020)$	$J / \psi+\pi, h_{c} / \eta_{c}+\pi / \rho$
2^{++}	$\|1,1\rangle_{2}$	$\|1,1\rangle_{2}$	$X_{2}(\sim 4000 \mathrm{MeV})$	$J / \psi+$ light mesons

One should build a diquark Hamiltonian with degenerate eigenvalues for $X(3872)$ and $Z_{c}(3900)$ - look at exp. mass values
A. Esposito, A. Guerrieri, F. Piccinini, A. Pilloni, ADP arXiv:1411.5997, IJMPA

Mass Spectrum

$$
H \approx 2 \kappa\left(\boldsymbol{S}_{q} \cdot \boldsymbol{S}_{c}+\boldsymbol{S}_{\bar{q}} \cdot \boldsymbol{S}_{\bar{c}}\right)
$$

$$
(H)_{1^{+-}}=\left(\begin{array}{cc}
-\kappa & 0 \\
0 & \kappa
\end{array}\right) \quad \begin{array}{ll}
(H)_{1^{++}}=-\kappa & (H)_{0^{++}}=-3 \kappa \\
(H)_{2^{++}}=\kappa & (H)_{0^{+++}}=\kappa
\end{array}
$$

Maiani, Piccinini, Polosa, Riquer, PRD89 (2014) and TYPE II Model

Loosely bound $Z_{c, b}$'s?

$$
\left\lvert\, \begin{aligned}
& Z_{c}(3900) \rightarrow \pi^{ \pm} J / \psi \\
& Z_{c}^{\prime}(4025) \rightarrow h_{c} \pi^{ \pm}
\end{aligned}\right.
$$

$$
m_{D^{0}}+m_{D^{*+}}=3875 \mathrm{MeV}
$$

$$
m_{D^{* 0}}+m_{D^{*+}}=4017 \mathrm{MeV}
$$

Better in the beauty sector

$$
\begin{aligned}
\Upsilon(5 S) \rightarrow \pi^{ \pm} Z_{b}^{\mp}(10610) \rightarrow & \pi^{ \pm} \pi^{\mp} \Upsilon(n S) \quad n=1,2,3 \\
\Upsilon(5 S) \rightarrow \pi^{ \pm} Z_{b}^{\mp}(10650) \rightarrow & \pi^{ \pm} \pi^{\mp} h_{b}(k P) \quad k=1,2 \\
& m_{B}+m_{B^{*}} \simeq 10604 \mathrm{MeV} \\
& 2 m_{B^{*}} \simeq 10650 \mathrm{MeV}
\end{aligned}
$$

No molecular matchings for the Z(4430)

The $Y\left(1^{-}\right)$resonances

$$
\frac{\mathcal{B}\left(Y_{B} \rightarrow \Lambda_{c} \bar{\Lambda}_{c}\right)}{\mathcal{B}\left(Y_{B} \rightarrow \psi(2 S) \pi^{+} \pi^{-}\right)}=24.6 \pm 6.6
$$

G. Cotugno, R. Faccini, ADP, C. Sabelli Phys. Rev. Lett. I 04, I 32005 (2010)

Negative Parity: L=1

$$
\begin{aligned}
Y_{1} & =|0,0\rangle \\
\text { Spin (dq basis) } \quad Y_{2} & =\frac{|1,0\rangle+|0,1\rangle}{\sqrt{2}} \text { Like the } X \text {; Mass difference due to } L \\
Y_{3} & =|1,1\rangle_{S=0} \\
Y_{4} & =|1,1\rangle_{S=2}
\end{aligned}
$$

We identify $Y(4360)$ and $Y(4660)$ decaying into $\psi(2 S) \pi$ as radial excitations of $Y(4008)$ and $Y(4260)$.

State	$P\left(S_{c \bar{c}}=1\right): P\left(S_{c \bar{c}}=0\right)$	Assignment	Radiative Decay
Y_{1}	$3: 1$	$Y(4008)$	$\gamma+X_{0}$
Y_{2}	$1: 0$	$Y(4260)$	$\gamma+X$
Y_{3}	$1: 3$	$Y(4290) / Y(4220)$	$\gamma+X_{0}^{\prime}$
Y_{4}	$1: 0$	$Y(4630)$	$\gamma+X_{2}$

R. Faccini, G. Filaci, A. Guerrieri, A. Pilloni, ADP arXiv:1412.7196, IJMPA

A brief tour in the beauty sector

A. Ali, L. Maiani, ADP, V. Riquer arXiv:1412.2049, PRD
1)

$$
\begin{aligned}
& M\left(Z_{b}^{\prime}\right)-M\left(Z_{b}\right)=2 \kappa_{b} \\
& M\left(Z_{c}^{\prime}\right)-M\left(Z_{c}\right)=2 \kappa_{c}=120 \mathrm{MeV} \\
& \kappa_{b}: k_{c}=M_{c}: M_{b} \approx 0.30 \\
& \Rightarrow 2 \kappa_{b} \simeq 36 \mathrm{MeV} \text { vs. } 45 \mathrm{MeV} \text { (exp.) }
\end{aligned}
$$

2)

$$
\left\lvert\, \begin{aligned}
& \Upsilon(10890)(\Upsilon(5 S) ?) \rightarrow Z_{b}^{(\prime)} \pi \rightarrow h_{b}(n P) \pi \pi \\
& Y(4260) \rightarrow Z_{c}(3900)+\pi \quad S_{c c^{*}}=0
\end{aligned}\right.
$$

$$
S_{c c}=1
$$

but

$$
Z_{b}=\frac{\alpha\left|1_{q \bar{q}}, 0_{b \bar{b}}\right\rangle-\beta\left|0_{q \bar{q}}, 1_{b \bar{b}}\right\rangle}{\sqrt{2}}
$$

$$
Z_{b}^{\prime}=\frac{\beta\left|1_{q \bar{q}}, 0_{b \bar{b}}\right\rangle+\alpha\left|0_{q \bar{q}}, 1_{b \bar{b}}\right\rangle}{\sqrt{2}}
$$

and data on $1 \longrightarrow 0$ and $1 \longrightarrow 1$ transitions strongly favor

$$
\alpha=\beta
$$

Conclusions

1. Seek autidenterons at ligh P_{\perp}
2. Precirion mearulem. of $\varepsilon, B\left(x \rightarrow D D^{*}\right)$, x similoly for $1, z$
3. Apponent heawy Jpin vislation in I decays (Belle II)
4. look for the "minring ones"

51 Bow't be forled by the phyris of effedt: cusps \& all that

Backup

Production: MC Tuning

Z(4430)- at LHCb | April 2014

Signal: 13.9σ
Other assignments ruled out at 9.7o
First observed by BELLE in 2007 and not confirmed by BaBar at that time

Charged Z_{c} (3900)

$$
\begin{aligned}
G & =G_{\pi} C_{J / \psi}= \\
& =-1(-1)=+1
\end{aligned}
$$

Found in $Y(4260) \rightarrow Z_{c}^{ \pm}(3900) \pi^{\mp} \rightarrow J / \psi \pi^{ \pm} \pi^{\mp}$

$$
P=+1(S-\text { wave })
$$

$$
\Rightarrow Z_{c}^{0} \text { has } J^{P C}=1^{+-}
$$

$$
I^{G} J^{P C}=1^{+} 1^{+-}
$$

Exotic charged charmonium-like state!

BESIII, arXiv:1303.5949

$$
\begin{gathered}
M=3899.0 \pm 3.6 \pm 4.9 \mathrm{MeV} \\
\Gamma=46 \pm 10 \pm 20 \mathrm{MeV}
\end{gathered}
$$

Belle, arXiv:1304.0121

$$
\begin{gathered}
M=3894.5 \pm 6.6 \pm 4.5 \mathrm{MeV} \\
\Gamma=63 \pm 24 \pm 26 \mathrm{MeV}
\end{gathered}
$$

One more Z_{c} observed (or two?)

$Z_{c}^{\prime}(4020), Z_{c}^{\prime}(4025)$

$$
\begin{aligned}
& Z_{c}^{\prime}(4025) \rightarrow D^{*} D^{*}< \\
& I^{G} J^{P C}=1^{+} 1^{+-} \\
& M=4026.3 \pm 4.5 \mathrm{MeV} \\
& \Gamma=24.8 \pm 9.5 \mathrm{MeV} \\
& \longrightarrow Z_{c}^{\prime}(4020) \rightarrow h_{c} \pi \\
& I^{G} J^{P C}=1^{+} 1^{\mp-} \\
& M=4022.9 \pm 2.8 \mathrm{MeV} \\
& \Gamma=7.9 \pm 3.7 \mathrm{MeV}
\end{aligned}
$$

BESIII, PRL111, 242001

IS THE X(3872) SOME SORT OF DD* DEUTERON?

$$
\begin{gathered}
k_{\mathrm{rel}}=\sqrt{2 \mu\langle T\rangle_{\psi}^{2}} \approx \begin{cases}80 \mathrm{MeV} & \text { for deuterium } \\
50 \mathrm{MeV} & \text { for } X ; U_{0} \approx-7 \mathrm{MeV} \mathcal{E}_{b} \approx-0.14 \mathrm{MeV}\end{cases} \\
\frac{\hbar^{2}}{2 \mu r_{0}^{2}}-\frac{g^{2}}{4 \pi} \frac{e^{-\frac{m \pi c}{\hbar}} r_{0}}{r_{0}}=\mathcal{E}_{b}=0.14 \mathrm{MeV} \Rightarrow r_{0} \approx 12 \mathrm{fm}
\end{gathered}
$$

exaggerating the differences between the momenta of D and D* (yellow / turquoise arrows)

Since 2003/4 new Charmonium-Like States

State	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (decay mode)	Experiment (\# σ)	$1{ }^{\text {st }}$ observation
$X(3823)$	3823.1 ± 1.9	<24	??-	$B \rightarrow K+\left(\chi_{c 1} \gamma\right)$	Belle [4] (3.8)	Belle 2013
$\boldsymbol{X}(\mathbf{3 8 7 2})$	3871.68 ± 0.17	<1.2	1^{++}	$\begin{aligned} & B \rightarrow K+\left(J / \psi \pi^{+} \pi^{-}\right) \\ & p \bar{p} \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right)+\ldots \\ & B \rightarrow K+\left(J / \psi \pi^{+} \pi^{-} \pi^{0}\right) \\ & B \rightarrow K+\left(D^{0} \bar{D}^{0} \pi^{0}\right) \\ & B \rightarrow K+(J / \psi \gamma) \\ & B \rightarrow K+(\psi(2 S) \gamma) \\ & p p \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right)+\ldots \end{aligned}$	Belle [[5, 6] (12.8), BABAR [7] (8.6) CDF [8-10] (np), DØ [11] (5.2) Belle [12] ${ }^{a}$ (4.3), BABAR [13] ${ }^{\text {a }}$ (4.0) Belle $[14,15]^{a}(6.4)$, BABAR $[16]^{a}(4.9)$ Belle $[17]^{a}(4.0)$, BABAR $[18,19]^{\boxed{a}}(3.6)$ BABAR [19] (3.5), Belle [17 ${ }^{a}$ (0.4) LHCb [20] (np)	Belle 2003
$X(3915)$	3917.5 ± 1.9	20 ± 5		$\begin{aligned} & B \rightarrow K+(J / \psi \omega) \\ & e^{+} e^{-} \rightarrow e^{+} e^{-}+(J / \psi \omega) \end{aligned}$	Belle [21] (8.1), BABAR [22] (19) Belle [23] (7.7), BABAR [13, 24](7.6)	Belle 2004
$\chi_{c 2}(2 P)$	3927.2 ± 2.6	24 ± 6		$e^{+} e^{-} \rightarrow e^{+} e^{-}+(D \bar{D})$	Belle [25] (5.3), BABAR [26] (5.8)	Belle 2005
$X(3940)$	3942_{-8}^{+9}	37_{-17}^{+27}		$\begin{aligned} & e^{+} e^{-} \rightarrow J / \psi+\left(D^{*} \bar{D}\right) \\ & e^{+} e^{-} \rightarrow J / \psi+(\ldots) \end{aligned}$	Belle [27] (6.0) Belle [28] (5.0)	Belle 2007
$G(3900)$	3943 ± 21	52 ± 11	1^{--}	$e^{+} e^{-} \rightarrow \gamma+(D \bar{D})$	BABAR [29] (np), Belle [30] (np)	BABAR 2007
$Y(4008)$	4008_{-49}^{+121}	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(J / \psi \pi^{+} \pi^{-}\right)$	Belle [31] (7.4)	Belle 2007
\boldsymbol{Y} (4140)	4144.5 ± 2.6	15_{-7}^{+11}		$B \rightarrow K+(J / \psi \phi)$	CDF [32,33$]$ (5.0), CMS [34] (>5)	CDF 2009
$X(4160)$	4156_{-25}^{+29}	139_{-65}^{+113}	??+	$e^{+} e^{-} \rightarrow J / \psi+\left(D^{*} \bar{D}^{*}\right)$	Belle [27] (5.5)	Belle 2007

[^0]
New Charmonium \& Bottomonium Like States

State	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (decay mode)	Experiment (\# ${ }^{\text {) }}$	$1^{\text {st }}$ observation
\boldsymbol{Y} (4260)	$4263{ }_{-9}^{+8}$	95 ± 14	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(J / \psi \pi^{+} \pi^{-}\right)$	BABAR [35, 36] (8.0), CLEO [37] (5.4) Belle [31] (15)	$\text { BABAR } 2005$
				$e^{+} e^{-} \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right)$		
				$e^{+} e^{-} \rightarrow\left(J / \psi \pi^{0} \pi^{0}\right)$	CLEO [38] (5.1)	
$Y(4274)$	$4274.4{ }_{-6.7}^{+8.4}$	32_{-15}^{+22}	? ${ }^{+}$	$B \rightarrow K+(J / \psi \phi)$	CDF [33] (3.1)	CDF 2010
$X(4350)$	$4350.6{ }_{-5.1}^{+4.6}$	$13.3{ }_{-10.0}^{+18.4}$	$0 / 2^{++}$	$e^{+} e^{-} \rightarrow e^{+} e^{-}(J / \psi \phi)$	Belle [39] (3.2)	Belle 2009
$\boldsymbol{Y}(4360)$	4361 ± 13	74 ± 18	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(\psi(2 S) \pi^{+} \pi^{-}\right)$	BABAR [40] (np), Belle [41] (8.0)	BABAR 2007
$X(4630)$	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle [42] (8.2)	Belle 2007
$Y(4660)$	4664 ± 12	48 ± 15	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(\psi(2 S) \pi^{+} \pi^{-}\right)$	Belle [41] (5.8)	Belle 2007
$Z_{c}^{+}(3900)$	3898 ± 5	51 ± 19	$1^{?-}$	$\begin{aligned} & Y(4260) \rightarrow \pi^{-}+\left(J / \psi \pi^{+}\right) \\ & e^{+} e^{-} \rightarrow \pi^{-}+\left(J / \psi \pi^{+}\right) \end{aligned}$	BESIII [43] (np), Belle [44] (5.2) Xiao et al. [45] ${ }^{a}$ (6.1)	BESIII 2013
$Z_{1}^{+}(4050)$	$4051-43$	82_{-55}^{+51}	?	$B \rightarrow K+\left(\chi_{c 1}(1 P) \pi^{+}\right)$	Belle [46] (5.0), BABAR [47] (1.1)	Belle 2008
$Z_{2}^{+}(4250)$	42488_{-45}^{+185}	177_{-72}^{+321}	?	$B \rightarrow K+\left(\chi_{c 1}(1 P) \pi^{+}\right)$	Belle [46] (5.0), BABAR [47] (2.0)	Belle 2008
$Z^{+}(4430)$	4443_{-18}^{+24}	107_{-71}^{+113}	?	$B \rightarrow K+\left(\psi(2 S) \pi^{+}\right)$	Belle [48, 49] (6.4), BABAR [50] (2.4)	Belle 2007
Y $Y_{b}(10888)$	10888.4 ± 3.0	$30.7_{-7.7}^{+8.9}$	1^{--}	$e^{+} e^{-} \rightarrow\left(\Upsilon(n S) \pi^{+} \pi^{-}\right)$	Belle [51, 52] (2.0)	Belle 2010
$Z_{b}^{+}(10610)$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$\begin{aligned} & \Upsilon(5 S) \rightarrow \pi^{-}+\left(\Upsilon(n S) \pi^{+}\right), n=1,2,3 \\ & \Upsilon(5 S) \rightarrow \pi^{-}+\left(h_{b}(n P) \pi^{+}\right), n=1,2 \end{aligned}$	Belle [53, 54] (16) Belle [53, 54] (16)	Belle 2011
$Z_{b}^{+}(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\begin{aligned} & \Upsilon(5 S) \rightarrow \pi^{-}+\left(\Upsilon(n S) \pi^{+}\right), n=1,2,3 \\ & \Upsilon(5 S) \rightarrow \pi^{-}+\left(h_{b}(n P) \pi^{+}\right), n=1,2 \end{aligned}$	Belle $[53,54](16)$ Belle [53, 54] (16)	Belle 2011

${ }^{a}$ Not included in the averages for M and Γ.

Hadronization must be 4q

A. Guerrieri, F. Piccinini, A. Pilloni, ADP arXiv:1405.7929, PRD

$$
|\psi\rangle=\alpha\left|[Q q]_{\overline{\mathbf{B}}_{c}}[\bar{Q} \bar{q}]_{\mathbf{3}_{c}}\right\rangle_{\mathcal{C}}+\beta\left|(Q \bar{Q})_{\mathbf{1}_{c}}(q \bar{q})_{\mathbf{1}_{c}}\right\rangle_{\mathcal{O}}+\gamma\left|(Q \bar{q})_{\mathbf{1}_{c}}(\bar{Q} q)_{\mathbf{1}_{c}}\right\rangle_{\mathcal{O}}
$$

- All 'woud-be' loosely bound molecules do not form any bound state.
- Sometimes a compact 4quark state is formed, but it could be that $|a|<|\beta|,|\gamma|$
- An amplification mechanism might be at work when the closed channel level matches the onset of the continuum spectrum of two mesons with the same quantum numbers.

Do we know 'amplification' mechanisms between open/closed channels?

Another Mechanism

Borrow some ideas from cold atom physics. The Fano-Feshbach mechanism.

Another Mechanism

Borrow some ideas from cold atom physics. The Fano-Feshbach mechanism.

$a \sim|C| \sum_{n}^{\perp} \frac{c}{} \frac{}{}\left\langle[Q q]_{\overline{\mathbf{B}}_{c}}[\bar{Q} \bar{q}]_{\left.\mathbf{3}_{c}, n\left|H_{c \mathcal{C}}\right|(Q \bar{q})_{\mathbf{1}_{c}}(\bar{Q} q)_{\mathbf{1}_{c}}\right\rangle_{O}}^{E_{O}-E_{n}}\right.$
Blue: loose molecule

Another Mechanism

Consider also that the $\mathrm{J} / \psi \rho^{+}$is sensibly lower than the related open charm charged molecule. This could be why there is no charged X and $/$-violat.

$a \sim|C| \sum_{n} \frac{c}{} \frac{c}{}\left\langle[Q q]_{\overline{3}_{c}}[\bar{Q} \bar{q}]_{3_{c}}, n\right| H_{\mathcal{C O}}\left|(Q \bar{q})_{1_{c}}(\bar{Q} q)_{1_{c}}\right\rangle_{O}$
Blue: loose molecule

4-quarks from lattice?

Esposito, Papinutto, Pilloni, ADP, Tantalo Phys.Rev. D88 (2013) 054029
On simulating a proton on the lattice, the interpolating operators

$$
O=\epsilon^{a b c} u^{a} u^{b} d^{c}, \quad \epsilon^{a b c} u^{a} u^{b} d^{c} \bar{s}^{d} s^{d} \ldots
$$

are equally good. One might wonder if is there any chance of studying genuine tetraquark configurations on the lattice as they might turn out not to be distinguishable from standard charmonia.

On the other hand states with two charm quarks cannot mix with standard chamonia.

More Exotic States

$$
\begin{aligned}
& \left|T^{0}\right\rangle=\left|Q_{u}=-2, Q_{c}=+2\right\rangle \\
& \left|T^{+}\right\rangle=\left|Q_{u}=-1, Q_{d}=-1, Q_{c}=+2\right\rangle \\
& \left|T_{s}^{+}\right\rangle=\left|Q_{u}=-1, Q_{s}=-1, Q_{c}=+2\right\rangle \\
& \left|T^{++}\right\rangle=\left|Q_{d}=-2, Q_{c}=+2\right\rangle \\
& \left|T_{s}^{++}\right\rangle=\left|Q_{s}=-2, Q_{c}=+2\right\rangle
\end{aligned}
$$

Production from heavy baryons

	Bottom quark decays	
Starting baryon	$b \rightarrow c \bar{u} d \quad\left(O\left(\lambda^{2}\right)\right)$	$b \rightarrow c \bar{u} s \quad\left(O\left(\lambda^{3}\right)\right)$
$\Xi_{b c}^{+}[b c u]$	$p \mathcal{T}^{0} \rightarrow p D^{0} D^{0}$	$\Sigma^{+} \mathcal{T}^{0} \rightarrow \Sigma^{+} D^{0} D^{0}$
	$n \mathcal{T}^{+} \rightarrow n D^{0} D^{+}$	$\Lambda^{0}\left(\Sigma^{0}\right) \mathcal{T}^{+} \rightarrow \Lambda^{0}\left(\Sigma^{0}\right) D^{0} D^{+}$
	$\Lambda^{0}\left(\Sigma^{0}\right) \mathcal{T}_{s}^{+} \rightarrow \Lambda^{0}\left(\Sigma^{0}\right) D^{0} D_{s}^{+}$	$\Xi^{0} \mathcal{T}_{s}^{+} \rightarrow \Xi^{0} D_{s}^{+} D^{0}$
$\Xi_{b c}^{0}[b c d]$	$n \mathcal{T}^{0} \rightarrow n D^{0} D^{0}$	$\Lambda^{0}\left(\Sigma^{0}\right) \mathcal{T}^{0} \rightarrow \Lambda^{0}\left(\Sigma^{0}\right) D^{0} D^{0}$
	$\Delta^{-} \mathcal{T}^{+} \rightarrow \Delta^{-} D^{+} D^{0}$	$\Sigma^{-} \mathcal{T}^{+} \rightarrow \Sigma^{-} D^{+} D^{0}$
	$\Sigma^{-} \mathcal{T}_{s}^{+} \rightarrow \Sigma^{-} D_{s}^{+} D^{0}$	$\Xi^{-} \mathcal{T}_{s}^{+} \rightarrow \Xi^{-} D_{s}^{+} D^{0}$
	Same final states as $[b c d]$	$\Xi^{0} \mathcal{T}^{0} \rightarrow \Xi^{0} D^{0} D^{0}$
	with $b \rightarrow c \bar{u} s$	$\Xi^{-} \mathcal{T}^{+} \rightarrow \Xi^{-} D^{+} D^{0}$
	(they differ by just $d \leftrightarrow s)$	$\Omega^{-} \mathcal{T}_{s}^{+} \rightarrow \Omega^{-} D_{s}^{+} D^{0}$

ISOSPIN VIOLATIONS

We set in the flavor basis X_{u}, X_{d}

$$
M=\left(\begin{array}{cc}
2 m_{u} & 0 \\
0 & 2 m_{d}
\end{array}\right)+\delta\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

where the mixing matrix has a diagonal structure in the Isospin $I=0,1$ basis, its eigenvectors being

$$
\frac{1}{\sqrt{2}}\binom{1}{1} \quad \frac{1}{\sqrt{2}}\binom{1}{-1}
$$

At the charmonium scale we expect the annihilations to be small and quark mass to dominate - observed $X \rightarrow \omega / \rho$ isospin breaking

CHARMED DIQUARKS

The octet with diquarks the 'azimuthal approach'

$$
\begin{aligned}
& \mathbb{q}_{i \alpha}=\epsilon_{i j k} \epsilon_{\alpha \beta \gamma} \bar{q}_{C}^{j \beta} \gamma_{5} q^{k \gamma}=[q q]_{0} \\
& \mathrm{q}_{\alpha}^{j k}=\epsilon_{\alpha \beta \gamma} \bar{q}_{C}^{\beta(j} \vec{\gamma} q^{k) \gamma}=[q q]_{1}
\end{aligned}
$$

$J^{P C}$	$\mathrm{dq}-\mathrm{dq}$
0^{++}	
1^{++}	$[c q]_{0}\left[\bar{c} \overline{]_{0}} \vee\left([c q]_{1}[\bar{c} \bar{q}]_{1}\right)_{0}\right.$
1^{+-}	$\frac{[c q]_{1}[\bar{c} \bar{q}]_{0}+[c q]_{0}[\bar{c} \bar{q}]_{1}}{\sqrt{2}}$
$2^{++}[\bar{c} \bar{q}]_{0}-[c q]_{0}\left[\bar{c} \overline{]_{1}}\right.$	
$\sqrt{2}$	$\left([c q]_{1}[\bar{c} \bar{q}]_{1}\right)_{1}$
$\left([c q]_{1}[\bar{c} \bar{q}]_{1}\right)_{2}$	

Spin problem in type I

In the type I diquark model we have two $1+-$ states the heavier, Z , at about 3880 MeV

$$
\left|Z^{(\prime)}\right\rangle=\alpha^{(\prime)}\left(|10\rangle_{u}-|01\rangle_{u}\right)+\beta^{(\prime)}|11\rangle_{u}+(u \rightarrow d)
$$

The expected spin of the cc^{*} pair being computed as

$$
\ell_{c \bar{c}}=\left(3 / 2+2\left\langle Z^{(\prime)}\right| \boldsymbol{S}_{c} \cdot \boldsymbol{S}_{\bar{c}}\left|Z^{(\prime)}\right\rangle\right)^{1 / 2}
$$

equal to $\sqrt{ } 2$ if $S_{c c^{*}}=1$, and 0 if $S_{c c}{ }^{*}=0$. Contrary to the experimental fact that the Z is observed to decay predominantly in J / ψ, we found

$$
\underbrace{\ell_{c \bar{c}}\left(Z^{\prime}\right)}_{\text {lighter }} \approx 3 \ell_{c \bar{c}}(Z)
$$

This problem is solved in the type II model in which the $\mathrm{S}_{\mathrm{q}} . \mathrm{S}_{\mathrm{q}^{*}}$ interaction is not the dominating one.

[^0]: ${ }^{a}$ Not included in the averages for M and Γ.

