Les Rencontre de Physic de Valee d'Aosta (LaThuile2015), 1-7 March 2015, La Thuile, Italy

# Exotic quarkonium-like states at B factories

Roman Mizuk ITEP, MEPhI, MIPT (Moscow)

#### Outline

Charged quarkonium-like states Vector  $J^{PC} = 1^{--}$  states

in bottomonium & charmonium sectors



### Hadronic transitions from $\Upsilon$ states



PRL100,112001(2008)  $\Gamma[\Upsilon(5S) \rightarrow \Upsilon(1S/2S/3S)\pi^{+}\pi^{-}] = 260/430/290 \text{ keV}$ PRL108,032001(2012)  $\Gamma[\Upsilon(5S) \rightarrow h_{b}(1P/2P)\pi^{+}\pi^{-}] = 190/330 \text{ keV}$ involves spin flip of heavy quark

no strong suppression



### Observation of charged Z<sub>b</sub><sup>+</sup> states



### Experimental summary on Z<sub>b</sub><sup>+</sup> states

$$\begin{split} \mathsf{M}_{\mathsf{Zb}(10610)} &- (\mathsf{M}_{\mathsf{B}} + \mathsf{M}_{\mathsf{B}^*}) = +2.6 \pm 2.1 \ \mathsf{MeV} \\ \mathsf{M}_{\mathsf{Zb}(10650)} &- 2\mathsf{M}_{\mathsf{B}^*} = +1.8 \pm 1.7 \ \mathsf{MeV} \\ \end{split} \qquad \begin{split} \Gamma_{\mathsf{Zb}(10650)} &= 11.5 \pm 2.2 \ \mathsf{MeV} \\ \Gamma_{\mathsf{Zb}(10650)} &= 11.5 \pm 2.2 \ \mathsf{MeV} \end{split}$$

arxiv:1209.6450

| -                                                                                 |                                         |                                                                                               |                               | -                 |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------|-------------------|--|--|
| <b>J<sup>P</sup> = 1</b> <sup>+</sup><br>6D amplitude analysis<br>arxiv:1403.0992 | Channel                                 | $\mathcal B$ of $Z_b(10610)$                                                                  | $\mathcal{B}$ of $Z_b(10650)$ |                   |  |  |
|                                                                                   | $\pi^+\Upsilon(1S)$                     | $(0.32 \pm 0.09)\%$                                                                           | $(0.18 \pm 0.05)\%$           |                   |  |  |
|                                                                                   | $\pi^+ \Upsilon(2S)$                    | $(4.38 \pm 1.21)\%$                                                                           | $(1.80 \pm 0.47)\%$           |                   |  |  |
|                                                                                   | $\pi^+ \Upsilon(3S)$                    | $(2.15 \pm 0.56)\%$                                                                           | $(1.23 \pm 0.30)\%$           |                   |  |  |
|                                                                                   | $\pi^+ h_b(1P)$                         | $(2.81 \pm 1.10)\%$                                                                           | $(5.6 \pm 2.0)\%$             |                   |  |  |
|                                                                                   | $\pi^+ h_b(2P)$                         | $(4.34 \pm 2.07)\%$                                                                           | $(11.1 \pm 4.7)\%$            | upproceed despite |  |  |
| $B^+$                                                                             | $B^{+}\bar{B}^{*0} + \bar{B}^{0}B^{*+}$ | $(86.0 \pm 3.6)\%$                                                                            | $(25 \pm 10)\%$               | larger PHSP       |  |  |
|                                                                                   | $B^{*+}\bar{B}^{*0}$                    | -                                                                                             | $(55.1 \pm 5.3)\%$            |                   |  |  |
| Assumption:                                                                       | dominant                                |                                                                                               |                               |                   |  |  |
| Assumption.                                                                       | _                                       |                                                                                               |                               |                   |  |  |
| Z <sub>b</sub> (10610) > =   B   B* >                                             |                                         | $\delta$ IVI ~ 0 $\Rightarrow$ loosely bound or virtual                                       |                               |                   |  |  |
| Z <sub>b</sub> (10650) ⟩ =   B*B* ⟩                                               |                                         | Decays into constituents dominate<br>$J^{P}=1^{+} \implies B^{(*)}\overline{B}^{*}$ in S-wave |                               |                   |  |  |

#### Structure of Z<sub>b</sub><sup>+</sup> : molecule

Bondar, Garmash, Milstein, RM, Voloshin, PRD84,054010(2011)

In the  $I^{G}(J^{P}) = 1^{+}(1^{+}) B^{(*)}\overline{B}^{*}$  molecule total spin of heavy  $b\overline{b}$ ,  $S_{bb}$ , is not definite.

**B**\*

Decomposition in  $S_{bb}$  eigenstates  $\Rightarrow$ 

Β

$$\begin{split} |Z_b'\rangle &= (0^-_{b\bar{b}}\otimes 1^-_{q\bar{q}} - 1^-_{b\bar{b}}\otimes 0^-_{q\bar{q}})/\sqrt{2} \\ |Z_b\rangle &= (0^-_{b\bar{b}}\otimes 1^-_{q\bar{q}} + 1^-_{b\bar{b}}\otimes 0^-_{q\bar{q}})/\sqrt{2} \\ & \\ \mathbf{h}_{\mathbf{b}}(\mathbf{mP})\pi & \mathbf{\hat{\Gamma}}(\mathbf{nS})\pi \end{split}$$

### Structure of Z<sub>b</sub><sup>+</sup> : molecule

Bondar, Garmash, Milstein, RM, Voloshin, PRD84,054010(2011)

In the  $I^{G}(J^{P}) = 1^{+}(1^{+}) B^{(*)}\overline{B}^{*}$  molecule total spin of heavy  $b\overline{b}$ ,  $S_{bb}$ , is not definite.

**B**\*

Decomposition in  $S_{bb}$  eigenstates  $\Rightarrow$ 

В

 $\begin{aligned} |Z_b'\rangle &= (0^-_{b\bar{b}} \otimes 1^-_{q\bar{q}} - 1^-_{b\bar{b}} \otimes 0^-_{q\bar{q}})/\sqrt{2} \\ |Z_b\rangle &= (0^-_{b\bar{b}} \otimes 1^-_{q\bar{q}} + 1^-_{b\bar{b}} \otimes 0^-_{q\bar{q}})/\sqrt{2} \\ & & \\ h_b(\text{mP})\pi & & \Upsilon(\text{nS})\pi \\ & & \\ & & \\ \text{relative phase} \end{aligned}$ 

Assumption of molecular structure allows to explain all properties of  $Z_b$  states.



### Structure of Z<sub>b</sub><sup>+</sup> : diquark-antidiquark



Ali et al, PRD85,054011(2012)  

$$\begin{split} |\tilde{Z}_b\rangle &= \left(0_{[bq]} \otimes 1_{[\bar{b}\bar{q}]} - 1_{[bq]} \otimes 0_{[\bar{b}\bar{q}]}\right)/\sqrt{2}, \\ |\tilde{Z}'_b\rangle &= 1_{[bq]} \otimes 1_{[\bar{b}\bar{q}]}. \end{split}$$

**Decomposition:** 

$$\begin{split} |\tilde{Z}_{b}\rangle &= (-1^{-}_{b\bar{b}} \otimes 0^{-}_{q\bar{q}} + 0^{-}_{b\bar{b}} \otimes 1^{-}_{q\bar{q}})/\sqrt{2} = (1^{-}_{b\bar{q}} \otimes 1^{-}_{q\bar{b}})^{B*B*} \\ |\tilde{Z}'_{b}\rangle &= (1^{-}_{b\bar{b}} \otimes 0^{-}_{q\bar{q}} + 0^{-}_{b\bar{b}} \otimes 1^{-}_{q\bar{q}})/\sqrt{2} \\ &= (1^{-}_{b\bar{q}} \otimes 0^{-}_{q\bar{b}} + 0^{-}_{b\bar{q}} \otimes 1^{-}_{q\bar{b}})/\sqrt{2} \\ B\bar{B}^{*} \end{split}$$

**Predictions:** 

$$\begin{array}{c} \mathsf{Z}_{\mathsf{b}} \to \mathsf{B}^* \overline{\mathsf{B}}^* \\ \mathsf{Z}_{\mathsf{b}}' \to \mathsf{B} \ \overline{\mathsf{B}}^* \end{array}$$

 $\Gamma(Z_b \rightarrow \Upsilon \pi) \sim \Gamma(Z_b \rightarrow h_b \pi) \sim \Gamma(Z_b \rightarrow B^{(*)}\overline{B}^*) \iff \text{diquark is destroyed in all cases}$ 

Decay pattern of Z<sub>b</sub> and Z<sub>b</sub>' disfavors diquark-antidiquark interpretation.

### Dynamical model for Z<sub>b</sub> states





3. Deutron-like molecule  $\pi,\rho,\omega,\sigma$  exchange  $\Upsilon(5S)$   $\pi$   $\overline{B^{(*)}}$   $\pi$   $\Gamma(2S)$ 

Ohkoda et al. PRD86,014004(2012)

 $\Rightarrow$  Predictions to fit data and discriminate models?

X(3872)

topcited Belle paper: 1000+

Produced in B decays and high energy pp collisions

Belle, CDF, LHCb

| $M_{X(3872)} - (M_{D0} + M_{D*0}) =$                                                                      | $-0.11 \pm 0.22$ MeV                                                                                                 | $\Gamma_{X(3872)} < 1.2$ M                                                                                             | $\text{Jev}$ $\mathbf{J}^{\text{re}} = 1^{\text{re}}$ |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Known decays<br>(BF relative to<br>J/ $\psi \pi^+\pi^-$ channel)                                          | J/ψ π <sup>+</sup> π <sup>-</sup> (=ρ <sup>0</sup> )<br>J/ψ ω<br>J/ψ γ<br>ψ(2S) γ<br>D <sup>0</sup> D̄* <sup>0</sup> | $ \begin{array}{c} 1 & & \text{isosp} \\ 0.8 \pm 0.3 & \\ 0.21 \pm 0.06 \\ 0.50 \pm 0.15 \\ \sim 10 & \\ \end{array} $ | oin violation                                         |
| Favored interpretation:<br>DD <sup>*</sup> molecule with admix<br>mass at threshold,<br>isospin violation | ture of $\chi_{c1}(2P)$<br>production<br>at high energy                                                              | Isospin Violatio                                                                                                       | n in X(3872) decay:                                   |
| -                                                                                                         |                                                                                                                      | ≈on mass shell                                                                                                         | ≈8 мev off mass shell                                 |

Dynamical model: boson exchange is not strong enough, need cc-DD\* rescattering.

Fraction of DD<sup>\*</sup> component? Bound or virtual? Accuracy in line shapes  $(J/\psi \pi^+\pi^-, D\overline{D}^*)$  $\leftarrow$  LHCb, Belle-II, PANDA.



### Transitions from $\Upsilon$ (5S)

Partial widths of hadronic transitions from  $\Upsilon(5S)$  are anomalously large:





#### Energy scan

arxiv:1501.01137



 $\Gamma[\Upsilon(6S) \rightarrow \Upsilon(1S/2S/3S)\pi^{+}\pi^{-}] = 120/140/200 \text{ keV}$ 

Scan to higher energy is planned at Belle-II ( $E_{max} \sim 11.24$ GeV).

















2

P





R







R





R





 $e^+e^- \rightarrow open \ charm$  using ISR

 $\frac{\Gamma [Y(4260) \rightarrow D^*D^*]}{\Gamma [Y(4260) \rightarrow J/\psi \pi^*\pi^-]} < 11^{\text{EPJC71,1534(2011)}}$ 

C.f. 
$$\frac{\Gamma [\psi(4160) \to D^*D^*]}{\Gamma [\psi(4160) \to J/\psi \pi^+\pi^-]} > 300$$

Y and  $\psi$  states have different structure?

Dubynskiy, Voloshin, PLB666,344(2008)

Y states: hadrocharmonium? charmonium embedded into light hadron



Explains "selection rules":

Y(4260) → J/ψ π<sup>+</sup>π<sup>-</sup> Y(4360) Y(4660) → ψ(2S) π<sup>+</sup>π<sup>-</sup>

Decays to open flavor channels are suppressed.







 $\Gamma$ [ $\psi$ (4040,4160)  $\rightarrow$  J/ $\psi$  η] ~ 1 MeV  $\psi$  states also have anomalous transitions. Why J/ $\psi$ η channel?

Decay pattern of vector charmonium-like states remains puzzling.

Need further studies: Belle/BaBar, BESIII, Belle-II, Super- cτ-Factory.





```
Observation of Z(4430)<sup>±</sup> \rightarrow \psi' \pi^{\pm}
```

 $B^{0,+} \rightarrow K^{-,0} \pi^+ \psi'$  Dalitz plot

PRL100,142001(2008)



#### Observation of Z(4430)<sup>±</sup> $\rightarrow \psi' \pi^{\pm}$

PRL100,142001(2008) Dalitz plot of of  $B \rightarrow \psi' \pi^+ K$ 23 Z(4430)+ projection 22 with K\* veto 21 6.5σ applied Events/0.01 GeV  $M^{2}(\psi(2S)\pi^{+}), GeV^{2}/c^{4}$ 20 19 18 PRD88,074026(2013) 4 05 4.55  $M(\pi^+ \psi')$ 4D amplitude analysis  $\Rightarrow$ 16  $M = 4485^{+22+28}_{-22-11} \text{ MeV}$ 15 eto  $\Gamma = 200^{+41+26}_{-46-35}$  MeV. 14 15 2.5 0.5 2  $M^{2}(K^{-}\pi^{+}), GeV^{2}/c^{4}$ including syst. **0**<sup>-</sup> (3.4σ) **Exclusion levels of 1**<sup>-</sup> (3.7<sub>5</sub>) other hypotheses: **2**<sup>-</sup> (4.7<sub>5</sub>) PRL112,222002(2014) **2**<sup>+</sup> (5.1 $\sigma$ ) -0.2 LHCb confirmed all Belle results. -0.4 Argand plot  $\Rightarrow$  resonant behavior of amplitude. -0.2 25 Re A<sup>Z</sup>

### Full amplitude analysis of B ightarrow J/ $\psi$ $\pi^+$ K<sup>-</sup>





### $Z(4430)^{\pm} \rightarrow J/\psi \pi^{\pm} \& \text{ new } Z(4200)^{\pm}$

#### Significance of Z(4430)<sup>±</sup> $\rightarrow$ J/ $\psi \pi^{\pm}$ is 5.1 $\sigma$ (4.0 $\sigma$ including systematics)

 $\frac{\Gamma [Z(4430) \to J/\psi \pi^{+}]}{\Gamma [Z(4430) \to \psi' \pi^{+}]} = 0.09 ^{+0.08}_{-0.05}$ 

suppressed despite larger phase space

-25  $+31\pm 17$  -57

expected for hadrocharmonium

| Significance of new Z(4200) <sup>±</sup> in J/ $\psi \pi^{\pm}$ channel:                 |             |             |             |             | $M = 4196^{+31+17}_{-29-13} \text{ MeV}$ |                                                                                                        |  |  |  |
|------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Model                                                                                    | 0-          | 1-          | $1^{+}$     | $2^{-}$     | $2^{+}$                                  | $\Gamma = 370^{+70+70}_{-70-132} \text{ MeV.}  [0^{-} (6.1\sigma)]$                                    |  |  |  |
| default                                                                                  | $3.9\sigma$ | $2.3\sigma$ | $8.2\sigma$ | $3.9\sigma$ | $1.9\sigma$                              | $\mathbf{P} = 1^+  \text{Exclusion}  1^- (7.4\sigma)$                                                  |  |  |  |
| Without $K^*(1680)$                                                                      | $3.2\sigma$ | $3.1\sigma$ | $8.4\sigma$ | $3.7\sigma$ | $1.9\sigma$                              | $2^{+}$ 1evels: $2^{+}(7.0\sigma)$                                                                     |  |  |  |
| Without $K_0^*(1950)$                                                                    | $3.6\sigma$ | $2.8\sigma$ | $8.6\sigma$ | $5.0\sigma$ | $2.6\sigma_{\perp}$                      |                                                                                                        |  |  |  |
| LASS                                                                                     | $3.8\sigma$ | $1.0\sigma$ | $6.6\sigma$ | $5.2\sigma$ | $2.3\sigma^{\frac{1}{2}}$                | $\begin{bmatrix} 0.1 \\ 0.05 \end{bmatrix} = \begin{bmatrix} 3.919 \\ 3.919 \end{bmatrix}$ Argand plot |  |  |  |
| Free masses and widths                                                                   | $2.4\sigma$ | $1.6\sigma$ | $7.3\sigma$ | $4.6\sigma$ | $1.9\sigma$                              |                                                                                                        |  |  |  |
| Free $r$                                                                                 | $5.0\sigma$ | $2.6\sigma$ | $8.4\sigma$ | $4.5\sigma$ | $0.9\sigma$                              | -0.05                                                                                                  |  |  |  |
| Nonresonant ampl. $(S)$                                                                  | $3.8\sigma$ | $2.9\sigma$ | $7.9\sigma$ | $4.1\sigma$ | $2.0\sigma$                              | -0.1<br>-0.15<br>-0.15<br>-0.15                                                                        |  |  |  |
| Nonresonant ampl. (S,P)                                                                  | $3.7\sigma$ | $2.4\sigma$ | $7.7\sigma$ | $3.7\sigma$ | $1.4\sigma$                              | -0.2                                                                                                   |  |  |  |
| Nonresonant ampl. $(S,P,D)$                                                              | $4.1\sigma$ | $2.3\sigma$ | $7.7\sigma$ | $3.8\sigma$ | $1.3\sigma$                              |                                                                                                        |  |  |  |
| "Look elsewhere" effect $\leftarrow$ toy MC $\rightarrow$ Reconant behavior of amplitude |             |             |             |             |                                          |                                                                                                        |  |  |  |

 $\Rightarrow$  Resonant behavior of amplitude.

#### Conclusions

**Recent results:** Observation of  $\Upsilon(4S) \rightarrow h_{\rm b}(1P) \eta$ U.Tamponi QWG2014  $\Upsilon(5S) \rightarrow \Upsilon(1D) \eta$  $\Upsilon(5S) \rightarrow \chi_{b1/2}(1P) \omega$ PRL113,142001(2014)  $\Upsilon(6S) \rightarrow \Upsilon(1S/2S/3S) \pi^+\pi^$ arxiv:1501.01137 Search for  $\Upsilon(5S) \rightarrow X_{\rm b} \gamma$ G.Tatishvili QWG2014 Measurement of  $\sigma [e^+e^- \rightarrow J/\psi K^+K^-]$ PRD89,072015(2014) Evidence for new state  $Z(4050)^+$  in  $\psi(2S) \pi^+$  channel arxiv:1410.7641 Observation of new state  $Z_c(4200)^+$  in  $J/\psi\pi^+$  channel in B decays PRD90,112009(2014) Evidence for  $Z(4430)^+ \rightarrow J/\psi \pi^+$ 

Properties of Z<sub>b</sub> states, Y(5S/6S) are so far consistent with molecular interpretation.
Charmonium sector is very different from bottomonium. Decay pattern is puzzling.
Presence of "short-distance" exotics (diquarks, valence gluons) is an open question.
Further studies: Belle/BaBar, BESIII, LHC, Belle-II, PANDA, Super-ct-Factory.

### Back-up

## Search for partners of X(3872)

one new peak There could exist molecules with  $J^P = 0^{++}, 1^{+-}, 2^{++}...$ **Μ(**χ<sub>c1</sub> γ) Events / ( 0.005 25 Belle searched for new states in decays  $4.2\sigma$  w/ syst.  $B^+ \rightarrow X K^+$  $X \rightarrow \chi_{c1} \gamma, \chi_{c2} \gamma$ PRL111, 032001 (2013)  $\downarrow J/\psi \gamma$ PTEP2014,043C01  $X \rightarrow J/\psi \eta$ 3.75 3.85 38 M<sub>x 7</sub> (GeV/c<sup>2</sup>)  $M = 3823.5 \pm 2.8 MeV$ Vinokurova QCD14  $X \rightarrow \eta_c \eta$ Γ < 14 MeV @90% C.L.  $X \rightarrow \eta_c \pi^0$ Radiative decay seen  $\Rightarrow \Gamma \sim O(100 \text{keV})$  $X \rightarrow \eta_c \pi^+ \pi^ X \rightarrow \eta_c \omega$ Above  $D\overline{D}$  threshold  $\Rightarrow J^{P} = 0^{-}, 1^{+}, 2^{-},...$ Potential models  $\Rightarrow \psi_2(1D)$  candidate No peaks near DD, DD\* or D\*D\* thresholds. 2<sup>--</sup> D-wave spin-triplet

 $\Rightarrow$  Subject for Belle-II.

Confirmation,  $J^P \leftarrow$  Belle-II.

### X(3940)

Double charmonium production:

 $e^+e^- \rightarrow J/\psi X(3940)$  $\downarrow \rightarrow D\overline{D}^*$  $e^+e^- \rightarrow J/\psi X(4160)$  $\downarrow \rightarrow D^*\overline{D}^*$ 

The only states produced in the same process  $\eta_c, \chi_{c0}, \eta_c(2S)$ J<sup>PC</sup> = 0<sup>?+</sup>

 $\begin{array}{l} X \not\rightarrow D\overline{D} \Longrightarrow J^{P} = 0^{-}, 1^{+}, 2^{-}, .. \\ \\ X(3940, 4160) = \eta_{c}(3S, 4S) ? \\ \\ masses off by \sim 300 MeV \end{array}$ 

Belle-II: measure J<sup>P</sup>.

```
Y(3940) \xrightarrow{} Y(3915) 
→ \chi_{c0}(2P)
```

```
B decays:

B \rightarrow Y(3915) \text{ K}

\downarrow \rightarrow J/\psi \omega

Two-photon process:

\gamma\gamma \rightarrow Y(3915) \rightarrow J/\psi \omega
```

```
PRD86,072002(2012)
BaBar measured J^P = 0^+
model dependent assumption
```

Y(3915) is 200MeV above  $D\overline{D}$ threshold and can decay to  $D\overline{D}$  $\Rightarrow \Gamma \sim 20$ MeV is extremely small  $\Rightarrow$  exotic structure

Belle-II: confirm J<sup>P</sup>, find other decay channels.

 $Z(3930) \rightarrow \chi_{c2}(2P)$ 

Two-photon process:  $\gamma\gamma \rightarrow Z(3930) \rightarrow D\overline{D}$ 

Mass, width, diphoton width agree with expectations.



 $\Rightarrow$  Observation of Z(4050)<sup>+</sup>, Z(4250)<sup>+</sup>

Belle-II: confirmation, measurement of  $J^{P}$ . 32

