Angular analyses of B meson decays to two vector mesons

H.Luo – University of Edinburgh On behalf of the LHCb Collaboration

Les Rencontres de Physique de la Valleé d'Aoste

March 1-7, 2015

- Charmless b-hadron decays:
 - Amplitude analysis of $B^0 \rightarrow (\pi^+\pi^-)(\pi^+\pi^-)$ decays: LHCb-PAPER-2015-006 (to be published soon)
 - 2 *CP* asymmetries and polarisation fractions in $B_s^0 \to K^{*0} \overline{K}^{*0}$ decays: LHCb-PAPER-2014-068 (to be published soon)

Amplitude analysis of $B^0 \rightarrow (\pi^+\pi^-)(\pi^+\pi^)$ decays and first observation of $B^0 \rightarrow \rho^0 \rho^0$

> Based on full Runl dataset, 3 fb⁻¹ LHCb-PAPER-2015-006

Motivations

- ${\cal B}^0 \to \rho \rho$ decays provide powerful constraint to the CKM angle α
- Babar and Belle found evidence for the colour-suppressed $B^0\to\rho^0(\pi^+\pi^-)\rho^0(\pi^+\pi^-)$ decay
- Large longitudinal polarization fraction (*f_L*) difference in the BaBar and Belle experiments due to signal size

Aims

Measure the branching ratio with respect to $B_d^0 \rightarrow \phi K^*(892)$ Determine the longitudinal polarization fraction:

$$f_L = rac{|A^0_{
ho
ho}|^2}{|A^0_{
ho
ho}|^2 + |A^{\parallel}_{
ho
ho}|^2 + |A^{\perp}_{
ho
ho}|^2}$$

Analysis

- Simultaneous fit to the $B^0 \to (\pi^+\pi^-)(\pi^+\pi^-)$ final state for the 2011 and 2012 data sets
- $\bullet\,$ Signal yields are $185\pm15\pm4$ and $449\pm24\pm7$ respectively
- *sPlot* technique is used to statistically subtract the background

Angular analysis

- A rich resonance structure, ρ^0 , ω , $f_0(980)$ and $f_2(1270)$, contribute to the $B^0 \rightarrow (\pi^+\pi^-)(\pi^-\pi^+)$ decay
- $B^0 \to \rho^0(\pi^+\pi^-)\rho^0(\pi^+\pi^-) \ (P \to VV)$ needs angular analysis to disentangle the helicity structure
- The differential decay rate includes $\rho\rho$, $\rho\omega$, $\rho(\pi\pi)$, $\rho f(980)$, $(\pi\pi)(\pi\pi)$, ρf_2 and $a_1\pi$, 11 terms in total

results

• The $B^0 \to \rho^0(\pi^+\pi^-)\rho^0(\pi^+\pi^-)$ decay longitudinal fraction is measured to be consistent with Babar results $(0.75^{+0.12}_{-0.15})$:

$$f_L = \frac{|A_{\rho\rho}^0|^2}{|A_{\rho\rho}^0|^2 + |A_{\rho\rho}^{\parallel}|^2 + |A_{\rho\rho}^{\perp}|^2} = 0.745^{+0.048}_{-0.058} \pm 0.033$$

• The BR of the $B^0 \to \rho^0(\pi^+\pi^-)\rho^0(\pi^+\pi^-)$ decay and upper limit of the $B^0 \to \rho f_0(980)$ decay are measured to be:

$$\begin{split} \mathcal{B}(B^0 \to \rho^0 \rho^0) &= (0.94 \pm 0.17 \pm 0.08 \pm 0.06 (B_d^0 \to \phi \mathcal{K}^*(892))) \times 10^{-6} \\ \mathcal{B}(B^0 \to \rho f_0(980)) \times (f_0(980) \to \pi^+ \pi^-) < 0.76 \times 10^{-6} \end{split}$$

Measurement of CP asymmetries and polarisation fractions in $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$ decays

Based on 1 fb⁻¹ dataset LHCb-PAPER-2014-068

- It is sensitive to physics beyond the SM via the appearance of unexpected angular distributions or CP violating phases
- Previous analysis (35pb⁻¹) show lower longitudinal polarisation fraction than the QCD prediction

Aims

Measure the Triple Product Asymmetries (TPA) Determine the polarisation fractions for the vector mode Measure the $B_s^0 \to K^{*0} \bar{K}^{*0}$ branching ratio with respect to the $B_d^0 \to \phi K^*(892)$ decay

Analysis

$$B^0_s \rightarrow K^+ \pi^- K^- \pi^+$$

• A total of 697
$$\pm$$
 31
 $B_s^0 \rightarrow K^+\pi^-K^-\pi^+$ events is obtained

- Similar selection cuts obtain a signal yields of 1049 \pm 33 $B_d^0 \rightarrow \phi K^*(892)$ events
- With angular analysis, the $B_s^0 \to K^{*0} \bar{K}^{*0}$ branching fraction is measured to be:

$$\begin{split} \mathcal{B}(B_s^0 \to \mathcal{K}^{*0}\bar{\mathcal{K}}^{*0}) = \\ (10.5 \pm 1.8 \pm 1.1 \pm 0.6(f_d/f_s)) \times 10^{-6} \end{split}$$

 Main systematic uncertainties are from the trigger efficiency and branching ratio error of the reference decay

$$B^0_d
ightarrow \phi K^*(892)$$

TP asymmetries

• Using the events within a $\pm 30 {\rm MeV}/c^2$ of the nominal B_s^0 mass and upper mass sideband events as background, the results are

Asymmetry	Value	Asymmetry	Value
A_T^1	$0.003 \pm 0.041 \pm 0.009$	A_D^1	$-0.061 \pm 0.041 \pm 0.012$
A_T^2	$0.009 \pm 0.041 \pm 0.009$	A_D^2	$0.081 \pm 0.041 \pm 0.008$
A_T^3	$0.019 \pm 0.041 \pm 0.008$	A_D^3	$-0.079 \pm 0.041 \pm 0.023$
A_T^4	$-0.040 \pm 0.041 \pm 0.008$	A_D^{4}	$-0.081\pm0.041\pm0.010$

 $A_{T,D}^i$ are asymmetry quantities related to the CP-odd amplitude A_\perp and $A_s^+,$ meaning of the asymmetries are in backup

- TPA derived from the the angular distribution of the signal events is measured to be consistent with zero
- Main systematic uncertainty is associated to the angular acceptance correction

Angular analysis

- Similar helicity basis as the $B^0 \to \rho^0 \rho^0$ decay
- The differential decay rate includes $K^{*0}\bar{K}^{*0}$, $K^{*0}K\pi$ and $(K\pi)(K\pi)$
- Measured longitudinal and parallel fractions are $0.201\pm0.057\pm0.040$ and $0.215\pm0.046\pm0.015$

12/13

Conclusion

- First observation of the $B^0 \rightarrow \rho^0 \rho^0$ decay, branching ratio is $\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0) = (0.94 \pm 0.17 \pm 0.08 \pm 0.06(B^0_d \rightarrow \phi K^*(892))) \times 10^{-6}$
- Large longitudinal polarisation fraction in the $B^0 \rightarrow \rho^0 \rho^0$ decay is consistent with the BaBar collaboration $(0.745^{+0.048}_{-0.058} \pm 0.033)$
- An upper limit at 90% confidence level of the $B^0 \to \rho f_0(980)$ is set to 0.76×10^{-6}
- TPA of the $B_s^0 \to K^{*0} \bar{K}^{*0}$ decay is **zero**, compatible with SM prediction
- Low longitudinal polarisation of this decay is confirmed
- Branching ratio of the $B_s^0 \rightarrow K^{*0}\bar{K}^{*0}$ is measured to be $(10.5 \pm 1.8 \pm 1.1 \pm 0.6(f_d/f_s)) \times 10^{-6}$

Back Up

LHCb detector

Differential decay rate

• Differential decay rate of the $B^0 \rightarrow (\pi^+\pi^-)(\pi^-\pi^+)$ decay: $d^5\Gamma = \frac{9}{8\pi} |\sum_{i=1}^{11} A_i f_i(m_1, m_2, \theta_1, \theta_2, \psi)|^2 d\Phi_4(m_1, m_2)$

where A_i are complex amplitudes, $f_i(m_1, m_2, \theta_1, \theta_2, \psi)$ are the mass-angle distributions

Ai	η_i	fi
$A^0_{\rho\rho}$	1	$M_ ho(m_1)M_ ho(m_2)\cos heta_1\cos heta_2$
$A_{ ho ho}^{\parallel}$	1	$M_{ ho}(m_1)M_{ ho}(m_2)rac{1}{\sqrt{2}}\sin heta_1\sin heta_2\cosarphi$
$A^{\perp}_{\rho\rho}$	$^{-1}$	$M_{\rho}(m_1)M_{\rho}(m_2)\frac{\sqrt{i}}{\sqrt{2}}\sin\theta_1\sin\theta_2\sin\varphi$
$A^0_{ ho\omega}$	1	$rac{1}{\sqrt{2}}[M_ ho(m_1)M_\omega(m_2)+M_\omega^{\vee-}(m_1)M_ ho(m_2)]\cos heta_1\cos heta_2$
$A^{\parallel}_{ ho\omega}$	1	$\frac{1}{\sqrt{2}}[M_{\rho}(m_1)M_{\omega}(m_2) + M_{\omega}(m_1)M_{\rho}(m_2)]\frac{1}{\sqrt{2}}\sin\theta_1\sin\theta_2\cos\varphi$
${\sf A}_{ ho\omega}^\perp$	$^{-1}$	$rac{\sqrt{1}}{\sqrt{2}}[M_ ho(m_1)M_\omega(m_2)+M_\omega(m_1)M_ ho(m_2)]rac{\sqrt{2}}{\sqrt{2}}\sin heta_1\sin heta_2\sinarphi$
$A_{ ho(\pi\pi)_0}$	$^{-1}$	$\frac{1}{\sqrt{6}}[M_{ ho}(m_1)M_{(\pi\pi)_0}(m_2)\cos\theta_1 + M_{(\pi\pi)_0}(m_1)M_{ ho}(m_2)\cos\theta_2]$
$A_{\rho f(980)}$	$^{-1}$	$\frac{1}{\sqrt{6}}[M_{\rho}(m_1)M_{f(980)}(m_2)\cos\theta_1 + M_{f(980)}(m_1)M_{\rho}(m_2)\cos\theta_2]$
$A_{(\pi\pi)_0(\pi\pi)_0}$	1	$M_{(\pi\pi)_0}(m_1)M_{(\pi\pi)_0}(m_2)^{\frac{1}{3}}$
$A^0_{\rho f_2}$	$^{-1}$	$\sqrt{\frac{5}{24}} \left[M_{ ho}(m_1) M_{f_2}(m_2) \cos \theta_1 (3 \cos^2 \theta_2 - 1) + M_{f_2}(m_1) M_{ ho}(m_2) \cos \theta_2 (3 \cos^2 \theta_1 - 1) \right]$
$A_{a_1\pi}^{S^+}$	1	$\frac{1}{\sqrt{3}}\sum_{\{ijkl\}}\frac{1}{\sqrt{3}}M_{a_1}(m_{ijk})M_{\rho}(m_{ij})\left[\cos\alpha_{kl}\cos\beta_{ik}+\sin\alpha_{kl}\sin\beta_{ik}\cos\Phi_{kl}\right]$

$$\begin{aligned} A_T^1 &= \frac{2\sqrt{2}}{\pi} \frac{1}{D} \int \Im(\mathcal{A}_{\perp} \mathcal{A}_0^*) \, \mathrm{d}t, \\ A_T^2 &= -\frac{4}{\pi} \frac{1}{D} \int \Im(\mathcal{A}_{\perp} \mathcal{A}_{\parallel}^*) \, \mathrm{d}t \\ A_T^3 &\equiv \frac{\Gamma((\cos\theta_1 + \cos\theta_2)\sin\varphi > 0) - \Gamma((\cos\theta_1 + \cos\theta_2)\sin\varphi < 0)}{\Gamma((\cos\theta_1 + \cos\theta_2)\sin\varphi > 0) + \Gamma((\cos\theta_1 + \cos\theta_2)\sin\varphi < 0)} \\ &= \frac{32}{5\pi\sqrt{3}} \frac{1}{D} \int \Im\left((\mathcal{A}_{\perp} \mathcal{A}_s^{-*} - \bar{\mathcal{A}}_{\perp} \bar{\mathcal{A}}_s^{-*}) \mathcal{M}_1(m) \mathcal{M}_0^*(m)\right) \, \mathrm{d}m \\ A_T^4 &\equiv \frac{\Gamma(\sin\varphi > 0) - \Gamma(\sin\varphi < 0)}{\Gamma(\sin\varphi > 0) + \Gamma(\sin\varphi < 0)} \\ &= \frac{3\pi}{4\sqrt{2}} \frac{1}{D} \int \Im\left((\mathcal{A}_{\perp} \mathcal{A}_{ss}^* - \bar{\mathcal{A}}_{\perp} \bar{\mathcal{A}}_{ss}^*) \mathcal{M}_1(m) \mathcal{M}_0^*(m)\right) \, \mathrm{d}m \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$\begin{split} A_D^{(1)} &\equiv \frac{\Gamma(\cos\theta_1 \cos\theta_2 (\cos\theta_1 - \cos\theta_2) > 0) - \Gamma(\cos\theta_1 \cos\theta_2 (\cos\theta_1 - \cos\theta_2) < 0)}{\Gamma(\cos\theta_1 \cos\theta_2 (\cos\theta_1 - \cos\theta_2) > 0) + \Gamma(\cos\theta_1 \cos\theta_2 (\cos\theta_1 - \cos\theta_2) < 0)} \\ &= \frac{\sqrt{2}}{5\sqrt{3}} \frac{1}{D} \left[9 \int \Re \left((A_s^+ A_0^* - \bar{A}_s^+ \bar{A}_0^*) \mathcal{M}_0(m) \mathcal{M}_1^*(m) \right) dm \\ &\quad +5 \int \Re \left((A_s^+ A_{ss}^* - \bar{A}_s^+ \bar{A}_{ss}^*) \mathcal{M}_1(m) \mathcal{M}_0^*(m) \right) dm \right] \\ A_D^{(2)} &\equiv \frac{\Gamma((\cos\theta_1 - \cos\theta_2) \cos\varphi > 0) - \Gamma((\cos\theta_1 - \cos\theta_2) \cos\varphi < 0)}{\Gamma((\cos\theta_1 - \cos\theta_2) \cos\varphi > 0) + \Gamma((\cos\theta_1 - \cos\theta_2) \cos\varphi < 0)} \\ &= -\frac{32}{5\pi\sqrt{3}} \frac{1}{D} \int \Re \left((A_s^+ \mathcal{A}_1^* - \bar{A}_s^+ \bar{A}_1^*) \mathcal{M}_0(m) \mathcal{M}_1^*(m) \right) dm \\ A_D^{(3)} &\equiv \frac{\Gamma((\cos\theta_1 - \cos\theta_2) > 0) - \Gamma((\cos\theta_1 - \cos\theta_2) < 0)}{\Gamma((\cos\theta_1 - \cos\theta_2) > 0) + \Gamma((\cos\theta_1 - \cos\theta_2) < 0)} \\ &= \frac{2\sqrt{2}}{5\sqrt{3}} \frac{1}{D} \left[3 \int \Re \left((A_s^+ \mathcal{A}_1^* - \bar{A}_s^+ \bar{A}_1^*) \mathcal{M}_0(m) \mathcal{M}_1^*(m) \right) dm \\ &\quad +5 \int \Re \left((A_s^+ \mathcal{A}_{ss}^* - \bar{A}_s^+ \bar{A}_{ss}^*) \mathcal{M}_1(m) \mathcal{M}_0^*(m) \right) dm \right] \\ A_D^{(4)} &\equiv \frac{\Gamma((\cos^2\theta_1 - \cos^2\theta_2) > 0) - \Gamma((\cos^2\theta_1 - \cos^2\theta_2) < 0)}{\Gamma((\cos^2\theta_1 - \cos^2\theta_2) > 0) + \Gamma((\cos^2\theta_1 - \cos^2\theta_2) < 0)} \\ &= \frac{1}{D} \Re \left(\mathcal{A}_s^+ \mathcal{A}_s^{-*} - \bar{\mathcal{A}}_s^+ \bar{\mathcal{A}}_s^{-*} \right) \end{split}$$

18/13