CMS Supersymmetry and Exotic Higgs Results

Rachel Yohay University of California, Davis Les Rencontres de Physique de la Vallée d'Aoste XXIX: Results and Perspectives in Particle Physics March 6, 2015

CMS-PHO-GEN-2008-028-1

Supersymmetry today

- Supersymmetry (SUSY) offers a clear and elegant solution to the hierarchy problem
- Many null results, but...
 - ...searches targeting third generation sfermions yield important insights into naturalness
 - ...many viable extensions of the minimal model (MSSM) exist
 - ...the 125-GeV Higgs boson gives new impetus to searches targeting the SUSY Higgs sector

SUSY2215 SUSY: THE NEW HOPE

QUANTUM MECHANICS AND QFT STILL HOLD THE ORBITAL COLLIDER STILL SEES NOTHING THREE CENTURIES OF TRIUMPH FOR SUSY AND STRINGS

The seasonal trends Invited seminar Extremely-weeny constrained SUSY How to ensure your model remains **NSFWMSSM** predictability-free FF3C10ACBA9-MSSM Forum MSSM retrograde Is choice moral? Anthropic landscaping and trimming it down "Every time you choose a path of action, The problem of condensed matter: They still a multiverse is killed" don't get it Strings - The Perpetual Revolution Special topic If the universe is not supersymmetric Number of free parameters: P or NP complete? is it necessarily existing? The perpetual conference 5 Jan - 5 Mar: Chamonix 15 Sep - 20 Nov: Jumeirah 1 15 Mar - 30 June: Hainan Island 21 Nov - 24 Dec: Hainan Island

July - 15 Sep: Wailea, Maui

Inclusive search with enormous reach Lepton flavor violating Higgs in squark and gluino mass • Direct search with order of magnitude Use of robust data-driven background better reach than previous indirect

- - Mostly independent of jet energy scale and resolution uncertainties
 - Broad applicability within SUSY
- 4-W final state combination
 - Demonstrates the power of combining channels to extend exclusion limits
- b-tagged razor
 - Novel discriminating variables allow the SM background to be parametrized by a simple function
 - Excellent rejection of QCD multijet backgounds

CMS SUSY and non-SM Higgs searches

- M_{T2} all-hadronic
 - estimations
- Dilepton edge fit

- Higgs + single top

• Low-E_T mono-photon

limit

 Very small cross section ⇒ multivariate discriminators necessary

Standard control region techniques

Difficult kinematic region to trigger ⇒

and data-driven backgrounds

dedicated parked data trigger

- High mass pseudoscalar $A \rightarrow Zy$
 - Clean signal well suited to CMS's strengths

For the latest CMS results on SUSY and related topics, see https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

SUSY

M_{T2} all-hadronic

- Combination of 123 signal regions defined by light jet multiplicity, b jet multiplicity, ME_T , H_T , and M_{T2}
 - M_{T2} accesses the mass of pair-produced particles that both decay via an undetected massive particle
- H_T and ME_T triggers
- Anti- $k_T R = 0.5$ ("AK5") particle flow jets corrected for charged and neutral energy from overlapping pp interactions ("pileup")
- Isolated charged lepton veto
 - Critical background from $W/Z/top \rightarrow leptons$ where the

MT2 all-hadronic: results

arXiv:1502.04358 [hep-ex]

Events

New

M_{T2} all-hadronic: interpretation

- Limits from a combination of relevant signal regions
- Furthest reach in gluino mass
- Observed limit worse than expected limit for sbottom mass likely due to downward fluctuation in lost lepton control sample

New

Dilepton edge fit

Drell-Yan control region
tt control region
Signal region
Signal/tt overlap region

- e⁺e⁻/µ⁺µ⁻ (Z^{*} decay or decay via slepton) + jets (sbottom decay) + ME_T (lightest neutralino)
 N_i
- Isolated, non-overlapping leptons with $p_T > 20$ GeV
- AK5 particle flow jets with corrected $p_T > 40^9 \text{GeV}$ and $\ln_j l < 3.0$
- Focus here on the central region $\tilde{g}(\ln 4 1 4)$ -
- Backgrounds
 - Drell-Yan di-electron and di-muon pairs
 - tī, WW, Drell-Yan di-tau, tW, b/c decays $t_q^{\overline{q}}$ leptons, and jet fakes: all result in ee/µµ as often as eµ

arXiv:1502.06031 [hepex]

Dilepton edge fit: results

Drell-Yan component

- Exponential (low-mass side) + Breit-Wigner ⊗ crystal ball
- Shape parameters fixed to values determined in fit to control region

New

• Normalization left floating

 $t\bar{t}$ (i.e. eµ) component

- Power law for the low-mass side
- Exponential for the highmass side
- Low→high mass transition
- ee, µµ, and eµ regions fit simultaneously

Signal component

- Triangle convolved with Gaussian
- Edge position and normalization left floating

arXiv:1502.06031 [hepex]

Dilepton edge fit: cross checks

arXiv:1502.06031 [hepex]

La Thuile XXIX 6 March 2015

Dilepton edge fit: interpretation

95% CL cross section upper limit [pb] GeV result) space $\rightarrow \tilde{X}_{2}^{0}b)$ ier

- $m_{\tilde{b}}$ limited by $\tilde{b}\tilde{b}^*$ cross section
- $m_{\tilde{\chi}_2^0}$ limited by kinematic requirement $m_{\tilde{X}_2^0} < m_{\tilde{b}}$

La Thuile XXIX 6 March 2015

New

MSSM 4-W final states: gluino production

La Thuile XXIX 6 March 2015

MSSM 4-W final states: sbottom production

Loose b tag requirement optimal for only 2 tops

arXiv:1412.4109 [hepex]

b-tagged razor

Razor variables efficiently reject QCD multijet backgrounds and estimate the mass scale of new particles $M_{\rm R} \equiv \sqrt{(|\vec{p}^{j_1}| + |\vec{p}^{j_2}|)^2 - (p_z^{j_1} + p_z^{j_2})^2},$ $\mathbf{R} \equiv \frac{M_{\mathrm{T}}^{\mathrm{R}}}{M_{\mathrm{R}}}.$

R -M_R triggers allow lower jet and lepton p_T compared to single- or di-object triggers

 $M_{\rm T}^{\rm R} \equiv \sqrt{\frac{E_{\rm T}^{\rm miss}(p_{\rm T}^{j_1} + p_{\rm T}^{j_2}) - \vec{p}_{\rm T}^{\rm miss} \cdot (\vec{p}_{\rm T}^{j_1} + \overline{\vec{p}_{\rm T}^{j_2}})}{2}},$

- Events divided into 0-lepton, 1-lepton, and 2-lepton boxes; each box further subdivided into exclusive N_b bins
- Backgrounds: V + jets (maximum 25%) and tt
- Maximum likelihood fit to background model f(M_R, R) in sideband regions extrapolated to signal region

b-tagged razor: interpretation

New

Lepton flavor violating Higgs

H→II' a generic prediction of SUSY and other 2HDM

- µe couplings strongly constrained by µ→eγ searches
- BR(H→μτ) ≈ 10%
- 2 decay modes (μτ_e, μτ_h) × 3 jet bins (0, 1, 2 jets)
 - Opposite sign, isolated lepton selection in each bin
 - Further optimization of p_T , M_T , and $\Delta \Phi$ done separately in each bin

μι _e	μι _h	
Main bkg.: Ζ→ττ, tτ̄	Main bkg.: jet fakes	
Main sig.: ggH	Main sig.: ggH	0 jets
Trigger: iso. μ + iso. e	Trigger: iso. μ	
Main bkg.: Ζ→ττ, tτ̄	Main bkg.: jet fakes	
Main sig.: ggH, VH	Main sig.: ggH, VH	1 jet
Trigger: iso. μ + iso. e	Trigger: iso. μ	
Main bkg.: Ζ→ττ, tτ̄	Main bkg.: jet fakes	2 ioto
Main sig.: VBF	Main sig.: VBF	2 jets
Trigger: iso. μ + iso. e	Trigger: iso. μ	

LFV Higgs: interpretation

- Limit on BR(H→μτ) translated into upper limit on LFV Yukawa coupling
- Direct search limit ~10× more stringent than previous limit derived from H→ττ measurement

Low-E_T mono-photon

• GMSB $H \rightarrow \widetilde{X}_1^0 G \rightarrow \gamma + ME_{\tau}$, 125 GeV Higgs \Rightarrow relatively low- E_{τ} photon and low- E_{τ} neutralinos

- Kinematic region of interest: $m_H/2 < m_{\chi_1^0} < m_H$
- 30 GeV isolated central photon + 25 GeV ME_T trigger from 8 TeV 7.3 fb⁻¹ parked data (only reconstructed in 2013)
- Isolated electron and muon veto
- Two novel methods for rejecting multijet and γ + jet events with mis-measured ME_T
 - ME_{τ} significance: Event-by-event likelihood that ME_{τ} is real based on known energy resolutions
 - MH_{T} minimization: cut on recalculated ME_{T} from particle 4-vectors that minimize the X² and require X² probability < 10⁻³
- Model-independent analysis: 0 or 1 jet, photon and jet not back to back
- Targeted analysis: no jet requirement, but cuts on ME_{T} significance and application of MH_{T} minimization

CMS-PAS-HIG-14-024

 $\chi^{2} = \sum_{i=objects} \left(\frac{(p_{\mathrm{T}}^{reco})_{i} - (\widetilde{p}_{\mathrm{T}})_{i}}{(\sigma_{p_{\mathrm{T}}})_{i}} \right)^{2} + \left(\frac{\widetilde{\not{E}}_{x}}{\sigma_{\not{E}_{x}}} \right)^{2} + \left(\frac{\widetilde{\not{E}}_{y}}{\sigma_{\not{E}_{y}}} \right)^{2}$

New

Low-E_T mono-photon: results

Model-independent selection

Shape from MC, normalization from data

Fully data-driven

CMS-PAS-HIG-14-024

La Thuile XXIX 6 March 2015

Low-E_T mono-photon: interpretation

Higgs + single top

 $C_t = -1 \Rightarrow 15 \times rate increase$

ď

- $qb \rightarrow tHq', t \rightarrow Wb, W \rightarrow (e/\mu)v, H \rightarrow WW$
 - Both W's decay leptonically ⇒ tri-lepton final state
 - W with same charge as top decays leptonically ⇒ same-charge di-lepton final state
 - Hadronic tau veto
- Same- and opposite-flavor di-lepton triggers
- Multivariate lepton ID discriminator in same-charge di-lepton analysis to reject jet fakes, hadron decays, and photon conversions
- Agreement on electron charge assignment between 3 independent sources
- Multivariate muon isolation for tri-lepton analysis, standard electron isolation
- Counting experiment with signal region defined by output of multivariate likelihood discriminator

CMS-PAS-HIG-14-026

Higgs + single top: results

- Fitted background yields from simultaneous fit to data in 3 channels (some correlated uncertainties)
- e e channel provides no additional sensitivity and is excluded from the combination

Jet fakes and hadron→lepton decays from

isolation and impact parameter sidebands

Charge mis-ID rate from $Z \rightarrow II$ tag and probe

NLO MC

La Thuile XXIX 6 March 2015

Higgs + single top: interpretation

☆ tHq, H→bb̄ expected (<u>CMS-PAS-HIG-14-015</u>) tHq, H→bb̄ expected ± 1σ ★ tHq, H→bb̄ observed ★ tHq, H→bb̄ observed (<u>CMS-PAS-HIG-14-001</u>)

Heavy $A \rightarrow Z\gamma$

- Motivated by 2HDM
- Backgrounds are SM Zγ (80%) and Z + jets where the jet fakes a photon (20%)
- Unbinned fit to $m_{II\gamma}$ using triple exponential to reduce signal bias to 20% background statistical uncertainty

CMS-PAS-HIG-14-031

- Broad resonance model: SM Higgs width
- Narrow resonance model: width = 1% mass
- Models generated in 50 GeV steps in mass and interpolated in between

CMS-PAS-HIG-14-031

R. Yohay

Particle Fever

Conclusion

 Research into supersymmetric models remained active and fruitful during the LHC long shutdown

- Searches require finesse and creativity, as well as luminosity
- We eagerly await Run II, ready to catch whatever nature throws our way!

27

Backup

LHC-style CLs

$$CL_{s}(\mu) = \frac{CL_{s+b}(\mu)}{CL_{b}(\mu)}.$$

<u>J. Phys. G 28 (2002) 2693</u>

La Thuile XXIX 6 March 2015

M_{T2} all-hadronic: backgrounds

Multijet background

- Data control region from sideband in $\Delta \Phi_{min}$ (minimum $\Delta \Phi$ (jet, ME_T) over the 4 highest p_T jets in the event); signal region $\Delta \Phi_{min} > 0.3$ rad
- M_{T2}-dependent scaling factor derived in low-M_{T2} dataset (50-80 GeV) and extrapolated to high M_{T2} via exponential + constant parametrization

Lost lepton background

 1-lepton data control region with M_T(lepton, ME_T) < 100 GeV

- Contributions from jet fakes and leptonic decays of hadrons subtracted
- Scaled by "lost lepton factor" depending on lepton ID and M_T efficiency
- No binning in M_{T2} for better statistical precision $\rightarrow M_{T2}$ distribution from MC
- Z→vv background
 - γ + jet data scaled by predicted Z/ γ ratio
 - Validated with Z→II + jet data

arXiv:1502.04358 [hep-ex]

R. Yohay

La Thuile XXIX 6 March 2015

M_{T2} all-hadronic: signal bins

	Lc	w-H _T regi	on	Medium- <i>H</i> _T region			High- <i>H</i> _T region		
		I _{T2} bin [Ge	V]		I _{T2} bin [Ge	V]	M _{T2} bin [GeV]		
NL = 2	200–240	350-420	570-650	125–150	220-270	425–580	120–150	260-350	
$N_{j} = 2,$ $N_{j} = 0$	240–290	420–490	>650	150–180	270-325	580-780	150–200	350-550	
$N_{\rm b}=0$	290–350	490–570		180–220	325-425	>780	200–260	>550	
$N_{\rm j} = 2$,	200–250	310-380	450–550	100–135	170–260	>450	100–180		
$N_{\rm b} \ge 1$	250–310	380-450	>550	135–170	260-450		>180		
	200–240	420-490		160–185	300–370	>800	160–185	350-450	
$N_{\rm j} = 3-5$,	240–290	490–570		185–215	370–480		185–220	450-650	
$N_{\rm b}=0$	290–350	570-650		215–250	480-640		220–270	>650	
	350-420	>650		250–300	640-800		270–350		
$N_{\rm j} = 3-5$,	200–250	310–380	460–550	150–175	210-270	380–600	150–180	230–350	
$N_{\rm b}=1$	250–310	380-460	>550	175–210	270–380	>600	180–230	>350	
$N_{\rm j} = 3-5$,	200–250	325-425		130–160	200–270	>370	130–200		
$N_{\rm b}=2$	250–325	>425		160–200	270–370		>200		
$N_{j} \ge 6$,	200–280	>380		160–200	250-325	>425	160-200	>300	
$N_{\rm b}=0$	280–380			200–250	325-425		200–300		
$N_{j} \geq 6$,	200–250	>325		150–190	250-350		150-200	>300	
$N_{\rm b}=1$	250–325			190–250	>350		200–300		
$N_{j} \geq 6$,	200–250	>300		130–170	220-300		130–200		
$N_{\rm b}=2$	250–300			170–220	>300		>200		
$N_{j} \geq 3$,	200–280	>280		125–175	175–275	>275	>125		
$N_{\rm b} \ge 3$									

arXiv:1502.04358 [hep-ex]

M_{T2} all-hadronic: systematics

Process	Source/Region	Effect	Shape
	$M_{\rm T2} < 200 {\rm GeV}$	10-50%	
Multijet	$M_{\rm T2} \ge 200 {\rm GeV}$	50-100%	—
	Lost-lepton method	10-65%	
	b-tagging scale factor	—	Х
$W(l_{u})$ tists and Top	Jet energy scale	_	Х
$W(i\nu)$ +jets and 10p	Matching scale	_	Х
	Renormalization and factorization scale	_	Х
	$p_{\rm T}$ MC NLO uncertainty	—	X
	Systematics on $Z(\nu\bar{\nu})/\gamma$ ratio (0-1 b jets)	20-30%	_
$Z(u\overline{u}) + iots$	Systematics on $1b/0b$ ratio from Z_{ll} (1 b jet)	10-75%	—
$Z(\nu\nu)$ +Jets	Statistics from γ +jets data (0-1 b jet)	5-100%	—
	simulation (≥ 2 b jets)	100%	—
	Luminosity uncertainty	2.6%	_
Signal	Trigger efficiency	1%	—
	Parton distribution functions	5-15%	—
	b-tagging scale factor	5-40%	Х
	Jet energy scale	5-40%	Х
	$p_{\rm T}$ MC NLO uncertainty	10-20%	X

arXiv:1502.04358 [hep-ex]

M_{T2} all-hadronic: limits

Simplified	Limit on parent particle	Best limit on	Limit on
model	mass at $m_{\widetilde{\chi}^0_1}=0$	LSP mass	mass splitting
Direct squark production			
Single light squark	$m_{\widetilde{q}} > 520 \mathrm{GeV}$	$m_{\widetilde{\chi}_1^0} > 120 \mathrm{GeV}$	$\Delta m(\widetilde{q}, \widetilde{\chi}_1^0) < 200 \text{GeV}$
8 degenerate light squarks	$m_{\widetilde{q}} > 875 \mathrm{GeV}$	$m_{\widetilde{\chi}_1^0} > 325 \mathrm{GeV}$	$\Delta m(\widetilde{\mathbf{q}}, \widetilde{\chi}_1^0) < 50 \mathrm{GeV}$
Bottom squark	$m_{\tilde{b}} > 640 \mathrm{GeV}$	$m_{\widetilde{\chi}_1^0} > 275 \mathrm{GeV}$	$\Delta m(\widetilde{\mathbf{b}}, \widetilde{\chi}_1^0) < 10 \mathrm{GeV}$
Top squark		•	
$m_{\tilde{t}} > m_t + m_{\tilde{\chi}_1^0}$	$m_{\tilde{t}} > 450 \mathrm{GeV}$	$m_{\tilde{\chi}_1^0} > 60 \mathrm{GeV}$	$\Delta m(\widetilde{\mathfrak{t}},\widetilde{\chi}_1^0) < 230\mathrm{GeV}$
$m_{\tilde{t}} < m_{t} + m_{\tilde{\chi}_{1}^{0}}$	$m_{\tilde{t}} > 175 \mathrm{GeV}$	$m_{\tilde{\chi}_1^0} > 60 \mathrm{GeV}$	$\Delta m(\widetilde{t}, \widetilde{\chi}_1^0) < 90 \mathrm{GeV}$
Direct gluino production			
$\widetilde{\mathrm{g}} ightarrow \mathrm{q} \overline{\mathrm{q}} \widetilde{\chi}_1^0$	$m_{\tilde{g}} > 1225 \mathrm{GeV}$	$m_{\tilde{\chi}_1^0} > 510 \mathrm{GeV}$	$\Delta m(\widetilde{\mathbf{g}}, \widetilde{\chi}_1^0) < 25 \mathrm{GeV}$
$\widetilde{\mathrm{g}} ightarrow \mathrm{b}\overline{\mathrm{b}}\widetilde{\chi}_1^0$	$m_{\widetilde{g}} > 1300 \mathrm{GeV}$	$m_{\tilde{\chi}_1^0} > 740 \text{GeV}$	$\Delta m(\widetilde{g}, \widetilde{\chi}_1^0) < 50 \mathrm{GeV}$
$\widetilde{ m g} ightarrow t ar{ m t} \widetilde{\chi}_1^0$	$m_{\widetilde{g}} > 1225 \mathrm{GeV}$	$m_{\widetilde{\chi}_1^0} > 450 \mathrm{GeV}$	$\Delta m(\widetilde{g}, \widetilde{\chi}_1^0) < 225 \mathrm{GeV}$
$ \begin{array}{c} \overline{\widetilde{g}_1 \rightarrow q \overline{q} \widetilde{\chi}_2^0, \widetilde{\chi}_2^0 \rightarrow h \widetilde{\chi}_1^0, \\ \overline{\widetilde{g}_2 \rightarrow q q' \widetilde{\chi}_1^\pm, \chi_1^\pm \rightarrow W^\pm \widetilde{\chi}_1^0} \end{array} $	$m_{\tilde{g}} > 825 \mathrm{GeV}$	$m_{\tilde{\chi}_1^0} > 410 \mathrm{GeV}$	$\Delta m(\widetilde{g}, \widetilde{\chi}_1^0) < 225 \mathrm{GeV}$
cMSSM/mSUGRA model	Mass limit for $m_{\tilde{q}} = m_{\tilde{g}}$	Gluino mass limit	Squark mass limit
	$m_{\tilde{g},\tilde{q}} > 1550 \text{GeV}$	$m_{\widetilde{g}} > 1150 \mathrm{GeV}$	$m_{\widetilde{q}} > 1450 \mathrm{GeV}$

arXiv:1502.04358 [hep-ex]

M_{T2} all-hadronic: discrimination

arXiv:1207.1798 [hep-ex]

Dilepton edge fit: RsF/OF

	Central	Forward					
	Factorization m	ethod					
R _{SF/OF}	$1.03 \pm 0.01 \pm 0.06$	$1.11 \pm 0.04 \pm 0.08$					
$R_{\rm ee/OF}$	$0.47 \pm 0.01 \pm 0.06$	$0.46 \pm 0.02 \pm 0.10$					
$R_{\mu\mu/OF}$	$0.56 \pm 0.01 \pm 0.07$	$0.65 \pm 0.03 \pm 0.14$					
r _{µe}	$1.09 \pm 0.00 \pm 0.11$	$1.18 \pm 0.00 \pm 0.24$					
R_{T}	$1.03 \pm 0.01 \pm 0.06$	$1.10 \pm 0.04 \pm 0.07$					
Control-region method							
R _{SF/OF}	$0.99 \pm 0.05 \pm 0.02$	$1.11 \pm 0.11 \pm 0.03$					
$R_{\rm ee/OF}$	$0.44 \pm 0.03 \pm 0.01$	$0.49 \pm 0.06 \pm 0.02$					
$R_{\mu\mu/\mathrm{OF}}$	$0.55 \pm 0.03 \pm 0.01$	$0.62 \pm 0.07 \pm 0.02$					
r _{µe}	1.12 ± 0.04 (stat)	1.12 ± 0.08 (stat)					
R_{T}	$0.98\pm0.05(\mathrm{stat})$	1.11 ± 0.11 (stat)					
Combined							
R _{SF/OF}	1.00 ± 0.04	1.11 ± 0.07					
$R_{\rm ee/OF}$	0.45 ± 0.03	0.48 ± 0.05					
$R_{\mu\mu/OF}$	0.55 ± 0.03	0.63 ± 0.07					

Dilepton edge fit: systematics

Uncertainty source	Impact on signal yield [%]
Luminosity	2.6
PDFs on acceptance	0-6
Lepton identification/isolation	2
Fast simulation lepton identification/isolation	2
Dilepton trigger	5
Lepton energy scale	0–5
$E_{\rm T}^{\rm miss}$	0-8
Jet energy scale/resolution	0-8
ISR modeling	0–14
Additional interactions	1

b-tagged razor: boxes

Box	Lepton	b-tag	Kinematic	Jet		
		Two-leptor	n boxes			
MuElo	\geq 1 tight electron and					
WILLIE	≥ 1 loose muon					
N/11N/11	≥ 1 tight muon and	>1 h tag	$(M_{\rm R} > 300 {\rm GeV} \text{ and } {\rm R}^2 > 0.15)$ and	>2 jots		
Iviuiviu	≥ 1 loose muon	≥ 1 D-lag	$(M_{\rm R} > 350 { m GeV} { m or} { m R}^2 > 0.2)$	≥ 2 jets		
FloFlo	\geq 1 tight electron and	-				
LIELIE	≥ 1 loose electron					
		Single-lepto	on boxes			
MuMultiJet	1 tight muon			>1 jots		
EleMultiJet	1 tight electron	>1 h tag	$(M_{\rm R} > 300 {\rm GeV} \text{ and } {\rm R}^2 > 0.15)$ and	≥ 4 jets		
MuJet	1 tight muon	≥1 D-lag	$(M_{\rm R} > 350 { m GeV} { m or} { m R}^2 > 0.2)$	2 on 2 jota		
EleJet	1 tight electron			2 01 5 jets		
Hadronic boxes						
MultiJet	none	$\geq 1 \text{ b-tag}$	$(M_{\rm R} > 400 {\rm GeV} \text{ and } {\rm R}^2 > 0.25)$ and	≥ 4 jets		
≥ 2 b-tagged jet	none	$\geq 2 b$ -tag	$(M_{\rm R} > 450 { m GeV} { m or} { m R}^2 > 0.3)$	2 or 3 jets		

- Fit in each box independently
- Fit b tag categories within a box simultaneously
- Common background shape parameters for 2b and ≥3b bins

MSSM 4-W final states

- Fully hadronic
 - H_T -ME_T triggers
 - 3-5, 6-7, and ≥8 jet categories, no b tags
 - Backgrounds: invisible Z, lost lepton, $W \rightarrow \tau_{had}$ (prompt W or $t \rightarrow W$), multijet
- 1 lepton: lepton- H_T -ME_T and lepton- H_T triggers
 - \geq 6 jets, of which \geq 2 b tags
 - High S_T = lepton p_T + ME_T, $\Delta \Phi$ (lepton p_T + ME_T, lepton p_T) > 1
 - Backgrounds: lost lepton, semi-leptonic tt, single top
- 2-3 leptons, \geq 2 same sign: ee, eµ, and µµ triggers
 - Same-sign dilepton and tri-lepton: b tags, non-prompt lepton background evaluated from data, diboson/ttW/ttZ from MC, electron charge mis-ID from Z tag and probe
- Combination of 5 channels: most background systematics uncorrelated, any correlated uncertainties (luminosity, lepton ID, etc.) assumed 100% correlated

LFV Higgs: signal bins

Variable	$H \rightarrow \mu \tau_e$			H	$H \to \mu \tau$	ħ
[GeV]	0-jet	1-jet	2-jet	0-jet	1-jet	2-jet
$p_{\rm T}^{\mu} >$	50	45	25	45	35	30
$p_{\rm T}^{ m e} >$	10	10	10			
$p_{\mathrm{T}}^{\overline{ au}} >$				35	40	40
$M_{ m T}^{ m e} <$	65	65	25			
$M_{ m T}^{ar{\mu}} >$	50	40	15			
$M_{ m T}^{ au} <$				50	35	35
[radians]				•		
$\Delta \phi_{ec{p}^{\mu}_{\mathrm{T}}-ec{p}^{ au_{\mathrm{h}}}_{\mathrm{T}}} >$				2.7		
$\Delta \phi_{\vec{p}_{\mathrm{T}}^{\mathrm{e}}-\vec{E}_{\mathrm{T}}^{\mathrm{miss}}} < $	0.5	0.5	0.3			
$\Delta \phi_{\vec{p}_{\mathrm{T}}^{\mathrm{e}}-\vec{p}_{\mathrm{T}}^{\mu}}^{\mu} >$	2.7	1.0				

arXiv:1502.07400 [hep-ex]

LFV Higgs: systematics

Systematic uncertainty	$H \to \mu \tau_e$	$H \rightarrow \mu \tau_h$
hadronic tau energy scale		3
jet energy scale	3–7	3–7
unclustered energy scale	10	10
$Z \rightarrow \tau \tau$ bias	100	

Systematic Uncertainty	Gluon	-Gluon I	Fusion	Vector Boson Fusion			
	0-Jets	1-Jets	2-Jets	0-Jet	1-Jet	2-Jets	
parton density function	+9.7	+9.7	+9.7	+3.6	+3.6	+3.6	
renormalization/factorization scale	+8	+10	-30	+4	+1.5	+2	
underlying event/parton shower	+4	-5	-10	+10	<1	-1	

Systematic uncertainty	$H \rightarrow \mu \tau_e$			$H \rightarrow \mu \tau_h$		
	0-Jet	1-Jet	2-Jets	0-Jet	1-Jet	2-Jets
electron trigger/ID/isolation	3	3	3			
muon trigger/ID/isolation	2	2	2	2	2	2
hadronic tau efficiency	—	—	—	9	9	9
luminosity	2.6	2.6	2.6	2.6	2.6	2.6
$\mathrm{Z} ightarrow au au$ background	3+3*	3+5*	3+10*	3+5*	3+5*	3+10*
$\mathrm{Z} ightarrow \mu \mu$, ee background	30	30	30	30	30	30
misidentified μ , e background	40	40	40			
misidentified $ au_{ m h}$ background	—	—	—	30+10*	30	30
WW, ZZ+jets background	15	15	15	15	15	65
tī background	10	10	10+10*	10	10	10+33*
$W + \gamma$ background	100	100	100			
b-tagging veto	3	3	3		—	—
single top production background	10	10	10	10	10	10

arXiv:1502.07400 [hep-ex]

La Thuile XXIX 6 March 2015

LFV Higgs: backgrounds

• Muons from $Z \rightarrow \mu \mu$ data replaced with simulated taus and normalized from simulation sideband extends to ∞

• Difficult-to-model hadronic activity and multiple pp interactions taken from data

- Jet faking lepton
 - Fake rate f_X = N_{X,iso}/N_{X,non-iso} measured in Z→μμ + X data sample (X = e,μ) and multiplied by yield in e(μ) + non-isolated τ_X/τ_h data sample (along with small trigger efficiency correction)
 - Test case for the fake rate method: predict yield in same-sign isolated $\mu\tau$ samples
 - Fake rate cross checked in multijet data sample
- $t\bar{t}$ from simulation with data normalization (2 jets, of which \geq 1 is b tagged)
- SM Higgs, diboson, Wy, and single top from simulation

Low-E_T mono-photon: signal bins

Selection requirements	Model ndep	endent	SUSY benchmark model			
Advanced selection	$Z\gamma \to \nu \overline{\nu} \gamma$	γ +jet	$Z\gamma \to \nu \overline{\nu} \gamma$	γ +jet	$M_{\widetilde{\chi}_1^0} = 120 \mathrm{GeV}$	
Number of jets < 2	0.909	0.769	-	-	-	
$\Delta \phi(\gamma, \text{jet}) < 2.5$	0.834	0.262	-	-	_	
Transverse mass > 100 GeV	-	-	0.867	0.292	0.829	
$H_{\rm T} < 100~{ m GeV}$	-	-	0.785	0.188	0.804	
M <i>H</i> _T minimization: $\widetilde{E}_T > 45$ GeV	-	-	0.761	0.071	0.743	
MH _T minimization: $Prob(\chi^2) < 10^{-3}$	-	-	0.626	0.033	0.467	
E_T significance > 20	-	-	0.440	0.001	0.195	
$\alpha > 1.2$	-	-	0.390	0.001	0.165	
$E_{\rm T}^{\gamma} < 60~{ m GeV}$	-	-	0.074	0.0002	0.106	

Low-E_T mono-photon: systematics

Source	Signal	$ \text{Jet} \rightarrow \gamma $	Electron $\rightarrow \gamma$	γ + jet	Ζννγ	$ W\gamma $
PDF	10(0)	-	_	-	4(4)	4(4)
Luminosity	2.6(2.6)	-	-	2.6(2.6)	2.6(2.6)	2.6(2.6)
Photon energy scale $\pm 1 \%$	4(0.5)	-	_	4(0.5)	4(0.5)	4(0.5)
E_T energy scale	4(2)	-	_	4(2)	4(2)	4(2)
Jet energy scale	3(2)	-	_	5(5)	3(2)	3(2)
Pileup	1(1)	-	_	1(1)	1(1)	1(1)
$Z\nu\nu\gamma$ MCFM NLO calculation	-	-	-	-	3(3)	-
γ + jet normalization	-	-	-	16(16)	-	-
$W\gamma$ MCFM NLO calculation	-	-	-	-	-	3(3)
Jet $\rightarrow \gamma$ unc.	-	35(35)	-	-	-	-
Electron $\rightarrow \gamma$ unc.	-	-	6(6)	-	-	-

Low-E_T monophoton: backgrounds

- Jet faking photon
 - Fake rate measured in low-ME_T sideband (ME_T < 40 GeV) and applied to high-ME_T data control sample of photons passing looser identification criteria than nominal
 - Real photon component estimated by fitting shower shape templates, then subtracted out
 - Isolated photon template from simulation
 - $\pi \rightarrow \gamma \gamma$ template from photon isolation sideband in data sample
 - 35% error due to choice of isolation sideband for fake rate denominator
- Electron faking photon
 - Due to missing seed pixel hit for the track reconstruction of a real electron
 - Pixel seed veto efficiency (97.7%) measured in Z→ee events, then applied to a data sample with the pixel seed requirement inverted
- Zy, Wy, and $W \rightarrow (\mu/\tau)v$ backgrounds from NLO simulation
- γ + jet shape from simulation; normalization from data with inverted ME_T requirement
 - Scale factor of 1.7(1.1) for 0(>0) jets

Low-E_T mono-photon: control samples

R. Yohay

La Thuile XXIX 6 March 2015

Low-E_T mono-photon: photon ID

arXiv:1502.02702 [physics.ins-det]

Same-sign $\ell\ell$ channel	<i>lll</i> channel
Two leptons of equal charge, $p_{\rm T} > 20 {\rm GeV}$	Three leptons with $p_{\rm T} > 20/10/10$ GeV
No additional leptons with lepton MVA > 0.35	No additional tight leptons
$m_{ll} > 20 \mathrm{GeV}$	$m_{ll} > 20 \mathrm{GeV}$
No identified hadronically-decaying $ au$ leptons	Z-veto: $ m_{ll} - m_Z > 15 \text{GeV}$
At least one central jet ($ \eta < 1.0$)	$E_{\rm T}^{\rm miss} > 30 {\rm GeV}$
At least one central jet tagged as CSV-L	Exactly one jet with tagged as CSV-M
At least one forward jet ($ \eta < 1.0$)	At least one forward jet ($ \eta > 1.5$)