Mixing and CP-violation in the B_s^0 system with ATLAS Les Rencontres de Physique de la Valle d'Aoste - 2015

Andy Wharton, On behalf of the ATLAS Collaboration

Lancaster University

March 4, 2015

Introduction

Why $B_s^0 \rightarrow J/\psi \phi$?

• Why, what, and how to measure

ATLAS 2011 Results

ATLAS and other RUN 1 results

Upcoming ATLAS 2012 Analysis

• Improvements made between 2011 and 2012

ATLAS in RUN 2 and Beyond

Expectations for the future

$CPV \text{ Measurements in } B^0_s \xrightarrow{J/\psi(\mu^+\mu^-)\phi(K^+K^-)}$

CP-Violation Phases

- $B^0_s \rightarrow J/\psi \phi$ expected to be extremely sensitive to BSM physics
- \bullet CP-violation phase: $\phi_{s},$ predicted by SM to high precision
 - $\phi_{sSM} = (-0.0364 \pm 0.0016)$
- Pseudo-scalar \rightarrow vector vector
 - 3 P-wave CP eigenstates
 - 2 S-wave contributions
 - Non-resonant $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)K^+K^-$
 - Resonant $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)f_0(K^+K^-)$

• Requires time-dependent angular analysis to resolve CP eigenstates

ATLAS Results

- Two publications on CPV in ${\sf B}^0_{\sf s} o {\sf J}/\psi\phi$ using 2011 data
 - Untagged, JHEP 12 (2012) 072 [1]
 - Tagged, Phys. Rev. D 90 (2014) 052007 [2]

$\begin{array}{c} \mathsf{B}^0_s \to J/\psi(\mu^+\mu^-)\phi(\mathsf{K}^+\mathsf{K}^-) \\ \\ \textbf{ATLAS 2011 Measurement} \end{array}$

Method

Measure:

- Mass and lifetime
- Transversity angles
- Initial flavour (pprox 30% of events)
- Unbinned maximal likelihood fit
 - $B_s^0 \rightarrow J/\psi \phi$ signal PDF
 - Two dedicated S-wave signal channels
 - Two B^0_d background channels
 - Combinatorial background

Figure: Transversity angles [3]

B_d^0 Background

• Due to misidentified π^\pm

•
$$\mathsf{B}^{\mathsf{0}}_{\mathsf{d}} \to \mathsf{J}/\psi(\mu^{+}\mu^{-})\mathsf{K}^{+}\pi^{-}$$

•
$$\mathsf{B}^{\mathsf{0}}_{\mathsf{d}} \to \mathsf{J}/\psi(\mu^{+}\mu^{-})\mathsf{K}^{*}(\mathsf{K}^{+}\pi^{-})$$

$B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(\kappa^+\kappa^-)$ ATLAS 2011 Mass and Lifetime Fits

Figure: ATLAS 2011 candidate event mass (left), and lifetime fit (right) [2]

$B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

Event Selection

p_T Cuts

Track/Vertex Quality Cuts

- 1 Pixel hit, 4 SCT hits track quality cut
- Vertex quality of:
 - $\chi^2/d.o.f < 10$ for J/ ψ candidate $\chi^2/d.o.f < 3$ for B⁰_s candidate

Mass Cuts

• 2.852
$$< m(\mu^+\mu^-) <$$
 3.332 GeV

• 1.0085 GeV $< m(K^+K^-) < 1.0305$ GeV

• 5.15
$$<$$
 m $(\mu^+\mu^-{
m K}^+{
m K}^-)$ $<$ 5.65 GeV

ATLAS Tagged 2011 Results

Measured Parameters		Atl	as 2011	[2]		
• Events:	Par	Val	Stat	Syst		
• Total. $\approx 131\ 000$	$\phi_s[rad]$	0.12	0.25	0.05		
• Signal, $pprox$ 22 000	$\Delta\Gamma_s[\text{ps}^{-1}]$	0.053	0.021	0.010		
Weak phase parameters:	$\Gamma_s[ps^{-1}]$	0.677	0.007	0.004		
• ϕ_s	$ A_{\parallel}(0) ^2$	0.220	0.008	0.009		
• Γ_s and $\Delta\Gamma_s$	$ A_0(0) ^2$	0.529	0.006	0.012		
• Transversity amplitudes:	$ A_S ^2$	0.024	0.014	0.028		
• $ A_0(0) ^2$ and $ A_{\parallel}(0) ^2$	δ_{\perp}	3.89	0.47	0.11		
• $ A_{\perp}(0) ^2$	$\delta_{ }$	[3.04,	3.23]	0.09		
• $ A_S ^2$	$\delta_{\perp} - \delta_{S}$	[3.02,	3.25]	0.04		
 Relative strong phases: 	$\Delta\Gamma_s > 0, \ \Delta m_S$ set to PDG value					
• δ_{\parallel} and δ_{\perp} • $\delta_{\perp} - \delta_{S}$	Table: ATLAS tagged 2011 res					

ATLAS 2011 and LHC RUN 1 Results

ATLAS 2011 Results, 2D Contours

Standard Model

Results are consistent with theoretical expectations

Figure: ATLAS 2011 2D likelihood scans in the ϕ_{s} - $\Delta\Gamma_{s}$ plane for the untagged analysis (left) [1] and tagged analysis (right) [2]

Current LHC Results

Current LHC Results

- Current LHC results show no significant deviation from SM predictions
- LHCb include additional channels in the measurement of ϕ_s
 - Improvement in statistical errors
 - Remove measurement of S-wave contributions

	Atlas 2011 [2]			CMS 2012 [4]			LHCb 2011 [5]			LHCb RUN1 [6]		
$\int L dt [\text{fb}^{-1}]$	4.9				20		1.0			3.0		
Par	Val	Stat	Syst	Val	Stat	Syst	Val	Stat	Syst	Val	Stat	Syst
$\phi_s[rad]$	0.12	0.25	0.05	- 0.03	0.11	0.032	0.07	0.09	0.01	-0.058	0.049	0.006
$\Delta \Gamma_s [ps^{-1}]$	0.053	0.021	0.010	0.096	0.014	0.0073	0.100	0.016	0.003	0.0805	0.0091	0.0032
$\Gamma_s[ps^{-1}]$	0.677	0.007	0.004	0.670 *	-	-	0.663	0.005	0.006	0.6603	0.0027	0.0015

*, CMS report c au = 447.3 \pm 3.0 \pm 3.5 [µm]

Table: Selected LHC RUN 1 results

ATLAS 2011 and LHC RUN 1 Results

LHC RUN 1 Results, 2D Contours

Standard Model

• No significant deviations from SM predictions

Figure: LHC RUN 1 2D likelihood scans in the ϕ_{s} - $\Delta\Gamma_{s}$ plane [7]

ATLAS 2012 and RUN 1

ATLAS 2012 Results

- Expected soon
- Will include a full RUN 1 result
 - BLUE combination
 - $\int L \, \mathrm{d}t = 19.2 \, \mathrm{fb}^{-1}$

Background Model

- New background model for:
 - Mass, lifetime, p_T
 - Angular distribution

Flavour Tagging

New tagging method

ATLAS RUN 2 Preparation

CPV Measurements in RUN 2 and Beyond

Hardware and Pile-Up

- Study for $B_s^0 \rightarrow J/\psi\phi$ complete, see ATL-PHYS-PUB-2013-010 [8]
- Full detector simulation of IBL (RUN 2/3) \rightarrow Baseline ITK (HL-LHC)
- ϕ_s sensitivity to:
 - Detector hardware
 - Run environment

Figure: IBL (left) [9] and baseline ITK (right) [10] geometries

ATLAS RUN 2 Preparation

Expected σ_{τ} Distributions

Per-candidate Lifetime Uncertainties

- ATLAS + IBL improves time resolution by 30% for fixed p_T
- ATLAS RUN 2 resolution competitive with LHCb expectations

Figure: Per-candidate lifetime uncertainties as a function of p_T (left), and expected lifetime uncertainty distribution (right) [8]

Increased Luminosity

Primary Vertex Reconstruction

• Increased luminosity brings additional challenges:

- Quality of reconstructed vertices
- B⁰_s to vertex association

Figure: Expected number of reconstructed primary vertices (left), and per-candidate lifetime uncertainties (right) [8]

Andy Wharton (Lancaster)

Expected Statistical Errors on ϕ_s

Estimation of ϕ_s Precision

- Pseudo-experiments used to estimate future statistical errors
- Model (based on ATLAS 2011 analysis) assumes:
 - $b\overline{b} \rightarrow J/\psi X$ cross-section doubles at 14 TeV
 - Conservative assumptions for triggers, vertexing, and flavour tagging

	2011	2012	RUN 2		RUN 3	HL-LHC
Detector	current	current	IB	L	IBL	ITK
Average interactions per BX ${<}\mu{>}$	6-12	21	60		60	200
Luminosity, fb ⁻¹	4.9	20	100		250	3 000
Di- μ trigger p_T thresholds, GeV	4 - 4(6)	4 - 6	6 - 6	11 - 11	11 - 11	11 - 11
Signal events per fb $^{-1}$	4 400	4 320	3 280	460	460	330
Signal events	22 000	86 400	327 900	45 500	114 000	810 000
Total events in analysis	130 000	550 000	1 874 000	284 000	758 000	6 461 000
MC $\sigma(\phi_s)$ (stat.), rad	0.25	0.12	0.054	0.10	0.064	0.022

Table: Expected statistical errors in future $B_s^0 \rightarrow J/\psi \phi$ analyses [8], highlighted are RUN 2, RUN 3, and HL-LHC predictions

Conclusions

$B_s^0 \rightarrow J/\psi \overline{\phi}$ Remains an Important Channel

- For B-physics in general
- As a BSM search tool

ATLAS Results

- 2011 Tagged analysis available [2]
- 2012 + RUN 1 results soon

RUN 2 Expectations

• Exciting times in 2015–17!

- [1] "Time-dependent angular analysis of the decay $B_s^0 \rightarrow J/\psi\phi$ and extraction of $\Delta\Gamma_s$ and the CP-violating weak phase ϕ_s by ATLAS". In: J. High Energy Phys. 12.arXiv:1208.0572. CERN-PH-EP-2012-182 (Aug. 2012), 072. 40 p.
- [2] Flavour tagged time dependent angular analysis of the B_s → J/ψφ decay and extraction of ΔΓ and the weak phase φ_s in ATLAS. Tech. rep. ATLAS-CONF-2013-039. Geneva: CERN, Apr. 2013.
- [3] T. Aaltonen et al. "Measurement of the CP-Violating Phase $\beta_s^{J/\Psi\phi}$ in $B_s^0 \rightarrow J/\Psi\phi$ Decays with the CDF II Detector". In: *Phys.Rev.* D85 (2012), p. 072002. DOI: 10.1103/PhysRevD.85.072002. arXiv: 1112.1726 [hep-ex].
- [4] Measurement of the CP-violating weak phase phi-s and the decay width difference DeltaGamma-s using the Bs to J/psiPhi(1020) decay channel. Tech. rep. CMS-PAS-BPH-13-012. Geneva: CERN, 2014.
- [5] R Aaij et al. "Measurement of *CP* violation and the B_s^0 meson decay width difference with $B_s^0 \rightarrow J/\psi K^+ K^-$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays". In: *Phys. Rev. D* 87, 112010 (2013). DOI: 10.1103/PhysRevD.87.112010. arXiv: 1304.2600 [hep-ex].
- [6] Roel Aaij et al. "Precision measurement of CP violation in B⁰_s → J/ψK⁺K⁻ decays". In: Phys.Rev.Lett. 114 (2015), p. 041801. DOI: 10.1103/PhysRevLett.114.041801. arXiv: 1411.3104 [hep-ex].
- Y. Amhis et al. "Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014". In: (2014). arXiv: 1412.7515 [hep-ex].
- [8] ATLAS B-physics studies at increased LHC luminosity, potential for CP-violation measurement in the $B_s^0 \rightarrow J/\psi \phi$ decay. Tech. rep. ATL-PHYS-PUB-2013-010. Geneva: CERN, Sept. 2013.
- M Capeans et al. ATLAS Insertable B-Layer Technical Design Report. Tech. rep. CERN-LHCC-2010-013. ATLAS-TDR-19. Geneva: CERN, Sept. 2010.
- [10] A Clark et al. Final Report: ATLAS Phase-2 Tracker Upgrade Layout Task Force. Tech. rep. ATL-UPGRADE-PUB-2012-004. Geneva: CERN, Oct. 2012.

Backup Slides

Signal PDF

k	${\cal O}^{(k)}(t)$	$g^{(k)}(heta_T,\psi_T,\phi_T)$
1	$\frac{1}{2} A_0(0) ^2 \left[(1+\cos\phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1-\cos\phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \pm 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin\phi_s \right]$	$2\cos^2\psi_T(1-\sin^2 heta_T\cos^2\phi_T)$
2	$\frac{1}{2} A_{\parallel}(0) ^{2}\left[(1+\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1-\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T(1-\sin^2 heta_T\sin^2\phi_T)$
3	$\frac{1}{2} A_{\perp}(0) ^{2}\left[(1-\cos\phi_{s})e^{-\Gamma_{\rm L}^{(s)}t}+(1+\cos\phi_{s})e^{-\Gamma_{\rm H}^{(s)}t}\mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\sin^2\psi_T\sin^2 heta_T$
4	$rac{1}{2} A_0(0) A_{\parallel}(0) \cos\delta_{\parallel} $	$-\frac{1}{\sqrt{2}}\sin 2\psi_T \sin^2 \theta_T \sin 2\phi_T$
	$\left[\left(1+\cos\phi_s\right)e^{-\Gamma_{\rm L}^{(s)}t}+\left(1-\cos\phi_s\right)e^{-\Gamma_{\rm H}^{(s)}t}\pm 2e^{-\Gamma_s t}\sin(\Delta m_s t)\sin\phi_s\right]$	
5	$ A_{ }(0) A_{\perp}(0) _{2}^{\frac{1}{2}}(e^{-\Gamma_{\mathrm{L}}^{(s)}t}-e^{-\Gamma_{\mathrm{H}}^{(s)}t})\cos(\delta_{\perp}-\delta_{ })\sin\phi_{s}$	$\sin^2\psi_T\sin2 heta_T\sin\phi_T$
	$\pm e^{-\Gamma_s t}(\sin(\delta_\perp - \delta_\parallel)\cos(\Delta m_s t) - \cos(\delta_\perp - \delta_\parallel)\cos\phi_s\sin(\Delta m_s t))]$	
6	$ A_0(0) A_{\perp}(0) [rac{1}{2}(e^{-\Gamma_{ m L}^{(s)}t}-e^{-\Gamma_{ m H}^{(s)}t})\cos\delta_{\perp}\sin\phi_s$	$\frac{1}{\sqrt{2}}\sin 2\psi_T \sin 2\theta_T \cos \phi_T$
	$\pm e^{-\Gamma_s t}(\sin\delta_\perp\cos(\Delta m_s t)-\cos\delta_\perp\cos\phi_s\sin(\Delta m_s t))]$	
7	$\frac{1}{2} A_{S}(0) ^{2}\left[\left(1-\cos\phi_{s}\right)e^{-\Gamma_{\mathrm{L}}^{(s)}t}+\left(1+\cos\phi_{s}\right)e^{-\Gamma_{\mathrm{H}}^{(s)}t}\mp2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}\right]$	$\frac{2}{3}\left(1-\sin^2\theta_T\cos^2\phi_T\right)$
8	$ A_{S}(0) A_{\parallel}(0) [\frac{1}{2}(e^{-\Gamma_{\mathrm{L}}^{(s)}t}-e^{-\Gamma_{\mathrm{H}}^{(s)}t})\sin(\delta_{\parallel}-\delta_{S})\sin\phi_{s}$	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$
	$\pm e^{-\Gamma_s t} (\cos(\delta_{\parallel} - \delta_S) \cos(\Delta m_s t) - \sin(\delta_{\parallel} - \delta_S) \cos \phi_s \sin(\Delta m_s t))]$	-
9	$rac{1}{2} A_S(0) A_{\perp}(0) \sin(\delta_{\perp}-\delta_S) $	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$
	$(1 - \cos \phi_s) e^{-\Gamma_{\rm L}^{(s)}t} + (1 + \cos \phi_s) e^{-\Gamma_{\rm H}^{(s)}t} \mp 2e^{-\Gamma_s t} \sin(\Delta m_s t) \sin \phi_s$	
10	$ A_0(0) A_S(0) _{\frac{1}{2}}(e^{-\Gamma_{ m H}^{(s)}t}-e^{-\Gamma_{ m L}^{(s)}t})\sin\delta_S\sin\phi_s$	$\frac{4}{3}\sqrt{3}\cos\psi_T\left(1-\sin^2\theta_T\cos^2\phi_T ight)$
	$\pm e^{-\Gamma_s t} (\cos \delta_S \cos(\Delta m_s t) + \sin \delta_S \cos \phi_s \sin(\Delta m_s t))]$	

Table: Signal PDF for the $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ analysis, showing kinematic, tagging, and helicity components [2]

Likelihood Formula, 1

$$\ln \mathcal{L} = \sum_{i=1}^{N} \{ w_i \cdot \ln(f_{s} \cdot \mathcal{F}_{s}(m_i, t_i, \Omega_i, P(B|Q)) + f_{s} \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, \Omega_i, P(B|Q)) + (1 - f_{s} \cdot (1 + f_{B^0}))\mathcal{F}_{bkg}(m_i, t_i, \Omega_i, P(B|Q))) \}$$
(5.1)

Likelihood Function

As shown in [2]. The terms in the log represent the signal, dedicated B_d^0 , and combinatorial background PDFs while w_i is a trigger efficiency weighting.

Likelihood Formula, 2

$\mathcal{F}_{s}(m_{i}, t_{i}, \Omega_{i}, P(B|Q)) = P_{s}(m_{i}, \sigma_{m_{i}}) \cdot P_{s}(\sigma_{m_{i}}) \cdot P_{s}(\Omega_{i}, t_{i}, P(B|Q), \sigma_{t_{i}})$ $\cdot P_{s}(\sigma_{t_{i}}) \cdot P_{s}(P(B|Q)) \cdot A(\Omega_{i}, p_{T_{i}}) \cdot P_{s}(p_{T_{i}})$

Likelihood Function

As shown in [2], the terms are (in order) mass Punzi, mass uncertainty Punzi, helicity PDF, lifetime uncertainty Punzi, tagging Punzi, detector angular sculpting PDF, and the p_T Punzi.

ATLAS 2011 Tagged Correlation Table

	ϕ_s	ΔΓ	Γ_s	$ A_{ }(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\parallel}	δ_{\perp}	$\delta_{\perp} - \delta_S$
ϕ_s	1.000	0.107	0.026	0.010	0.002	0.029	0.021	-0.043	-0.003
$\Delta\Gamma$		1.000	-0.617	0.105	0.103	0.069	0.006	-0.017	0.001
Γ_s			1.000	-0.093	-0.063	0.034	-0.003	0.001	-0.009
$ A_{ }(0) ^2$				1.000	-0.316	0.077	0.008	0.005	-0.010
$ A_0(0) ^2$					1.000	0.283	- 0.003	-0.016	-0.025
$ A_{S}(0) ^{2}$						1.000	-0.011	-0.054	-0.098
δ_{\parallel}							1.000	0.038	0.007
δ_{\perp}								1.000	0.081
$\delta_{\perp} - \delta_S$									1.000

Figure: Fitted parameter correlations, as shown in [2]

ATLAS 2011 Tagged Systematic Errors

	ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
ID alignment	$< 10^{-2}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	-	$< 10^{-2}$	$< 10^{-2}$	-
Trigger efficiency	$< 10^{-2}$	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-2}$	$< 10^{-2}$	$< 10^{-2}$
B^0 contribution	0.03	0.001	$< 10^{-3}$	$< 10^{-3}$	0.005	0.001	0.02	$< 10^{-2}$	$< 10^{-2}$
Tagging	0.03	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.04	$< 10^{-2}$	$< 10^{-2}$
Acceptance	0.02	0.004	0.002	0.002	0.004	-	-	$< 10^{-2}$	-
Models:									
Default fit	$< 10^{-2}$	0.003	$< 10^{-3}$	0.001	0.001	0.006	0.07	0.01	0.01
Signal mass	$< 10^{-2}$	0.001	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$	0.03	0.04	0.01
Background mass	$< 10^{-2}$	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.06	0.02	0.02
Resolution	0.02	$< 10^{-3}$	0.001	0.001	$< 10^{-3}$	0.002	0.04	0.02	0.01
Background time	0.01	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002	0.01	0.02	0.02
Background angles	0.02	0.008	0.002	0.008	0.009	0.027	0.06	0.07	0.03
Total	0.05	0.010	0.004	0.009	0.012	0.028	0.11	0.09	0.04

Figure: Systematic errors, as shown in [2]

Current LHC Results

	Atlas 2011 [2]		CMS 2012 [4]			LHCb 2011 [5]			LHCb RUN1 [6]			
$\int L dt$ [fb ⁻¹]		4.9			20		1.0			3.0		
Par	Val	Stat	Syst	Val	Stat	Syst	Val	Stat	Syst	Val	Stat	Syst
$\phi_s[rad]$	0.12	0.25	0.05	- 0.03	0.11	0.032	0.07	0.09	0.01	-0.058	0.049	0.006
$\Delta \Gamma_s [ps^{-1}]$	0.053	0.021	0.010	0.096	0.014	0.0073	0.100	0.016	0.003	0.0805	0.0091	0.0032
$\Gamma_s[ps^{-1}]$	0.677	0.007	0.004	0.670 *	-	-	0.663	0.005	0.006	0.6603	0.0027	0.0015
$ A_0(0) ^2$	0.529	0.006	0.012	0.511	0.006	0.0116	0.521	0.006	0.010	0.5241	0.0034	0.0067
$ A_{\perp}(0) ^2$	0.227 **	-	-	0.242	0.008	0.0117	0.249	0.009	0.006	0.2504	0.0049	0.0036
$ A_{S} ^{2}$	0.024	0.014	0.028	0.015	0.016	0.022	-	-	-	-	-	-
δ_{\perp}	3.89	0.47	0.11	2.73	0.36	0.66	3.07	0.22	0.08	3.08	-0.15 +0.14	0.06
δ_{\parallel}	[3.04, 3	3.23]	0.09	3.48	0.36	0.685	3.30	$^{-0.21}_{+0.13}$	0.08	3.26	-0.17 +0.10	$^{-0.07}_{+0.06}$
$\delta_{\perp} - \delta_S$	[3.02, 3	3.25]	0.04	0.34	0.24	1.12	-	-	-	-	-	-

*, CMS report $c au = 447.3 \pm 3.0 \pm 3.5 \; [\mu m]$

**, ATLAS report $|A_{||}(0)|^2 = 0.220 \pm 0.008 \pm 0.009$

Table: Selected LHC RUN 1 results

CPV Measurements in RUN 2 and Beyond

Process	Trigger	Geometry	μ	MC Events
$B^0_{s} o J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	$p_T(\mu^{\pm}) > 3.5 \mathrm{GeV}$	2012	20	$40 \cdot 10^{6}$
$B^{0}_{s} ightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	${\it p_T}(\mu^\pm) > { m 6~GeV}$	IBL	60	$50 \cdot 10^3$
$B^{0}_{s} ightarrow J/\psi(\mu^{+}\mu^{-})\phi(K^{+}K^{-})$	${\it p_T}(\mu^\pm) > 11 { m GeV}$	IBL	60	$50 \cdot 10^3$
$B^{0}_{s} ightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$	${\it p_T}(\mu^\pm) > 11 { m GeV}$	ІТК	200	$50 \cdot 10^3$

Table: Selected future CPV studies for $B_s^0 \rightarrow J/\psi \phi$ [8]