Search for pair production of vector-like partners of the top quark (T) with $T \rightarrow tH, H \rightarrow \gamma \gamma$

Giuseppe Fasanella on behalf of the CMS collaboration **YSF, La Thuile 2015**

"ULB" Université Libre de Bruxelles "Sapienza" Università di Roma e INFN- Sezione di Roma, Italy

Giuseppe Fasanella, ULB Bruxelles

Introduction and motivation

- The Standard Model (SM) is a very well established theory, whose predictions have been experimentally tested with high precision
- The Higgs (BEH) boson has been discovered with a M_{μ} ~125 GeV
- Now the question is: 'Why is the mass of the Higgs boson so small ?'

Need to cancel out the divergent contribution \rightarrow Heavy replicas of the t quark (T)

Existence of T quark : needed in several BSM theories (*little Higgs, composite Higgs*)

T pair production

- Within several theories BSM : extra "up-type" (T) quarks with vector-like couplings
- Possible decay modes: T \rightarrow tH, tZ , Wb
- TT production has large cross-section (~pb) in a wide range of m_τ (strong production) and independent on the weak isospin quantum numbers

• Decay mode considered: $T \rightarrow tH$, where the presence of a well-identified H in the final state would be crucial in order to characterize the signal

Search for T: strategy

Leptonic Channel (Example)

- Search technique: exploit the narrow resonance of $H \rightarrow \gamma \gamma$, fitting a peak in $M\gamma\gamma$ distribution (as done in Hgg analysis)
- Main advantage wrt other decay channels: estimate the background directly from data
- Hadronic/Leptonic channel to improve sensitivity (Leptonic channel has better S/B, the hadronic one has higher xsec)

Search for T: strategy

 $\begin{array}{c}
\overline{b} \\
\overline{b} \\
\overline{c} \\
\overline$

Leptonic Channel (Example)

Main aspects of the analysis:

- **Optimization** using TT signal @ 700 GeV in the scenario BR(T \rightarrow tH)=1
- Background obtained with data-driven methods both for signal extraction and limit derivation
- Searching for signal in the scenario $BR(T \rightarrow tH)=1$, then reinterpreted in all other possible sets of different BRs

Optimization Strategy

- Data Control Sample (for non-resonant bkgs)
- $ttH(\rightarrow\gamma\gamma)$ (resonant background)
- TT (m₁=700 GeV) for signal

Event selection defined optimizing cuts on the most discriminant variables: $p_T(\gamma_1)$, $p_T(\gamma_2)$, H_T / # jets, # b-tags

Signal and Bkg estraction

- Diphoton channel advantage:
 - Presence of a narrow mass peak
 - Possibility to use Myy spectrum to evaluate bkg under signal peak
- Signal region: window around nominal mass
- Sidebands: the rest of the $M\gamma\gamma$ spectrum, from 100 to 180 GeV

- Main issues:
 - Width of the signal region: 3 GeV around 125 GeV (1 FWHM region)
 - Shape of the background: exponential

Systematic uncertainties

	ΤŦ	tīH
Luminosity	$\pm 2.4\%$	$\pm 2.4\%$
PDF	-	$\pm 8.1\%$
QCD scale	-	+4/-9%
Photon Energy Resolution	+4/-2 %	+4/-2%
Photon Energy Scale	+1/-4 %	+1/-4 %
Photon ID Efficiency	$\pm 2\%$	$\pm 2\%$
Trigger	< 0.1%	< 0.1%
JEC	$\pm 2\%$ (had) $\pm 1\%$ (lep)	$\pm7\%$ (had) $\pm5\%$ (lep)
JER	$\pm 1\%$	< 0.5%
b-tagging	< 0.5% (had)	< 0.5% (had)
Pile-up identification	$\pm 2\%$	$\pm 2\%$
Lepton Reconstruction	$\pm 1\%$ (lep)	±1%

- Photons' systematics are shape systematics
- All the others are just systematics on normalization
- Systematics on photons, leptons, jets: same approach as for Hgg exclusive categories

Unbinned maximum-likelihood fit between 100-180 GeV

Window: 3 GeV around 125 GeV

Process	Hadronic	Leptonic
$T\overline{T}(m_{\rm T}=700~{\rm GeV})$	1.05	0.43
tīH	0.042	0.039
Background	$0.65\substack{+0.16 \\ -0.13}$	$0.11\substack{+0.07\\-0.03}$
Observed Data	2	0

No excess found in data wrt background-only hypothesis

Interpretation: cross section limits

95% CL exclusion, In the hypothesis $BR(T \rightarrow tH) = 1$:

- Expected excluded mass for hadronic channel is up to m_{τ} =538 GeV
- Expected excluded mass for leptonic channel is up to m_{τ} =522 GeV
- Observed combined exclusion up to m₁=540 GeV (exp. 607 GeV)

2D interpretation of results

• Interpretation for other values of BRs in the 2D plane BR(T \rightarrow tH) vs m_{τ}

- Different scenarios for BR(T \rightarrow Wb) and BR(T \rightarrow tZ)
- Results only sensitive to BR(T→tH)
- Excluded region: upper left corner

2D interpretation of results

• Interpretation for other values of BRs in the 2D plane BR(T \rightarrow tH) vs m_T

CMS Preliminary \s=8 TeV L=19.7 fb⁻¹ CMS Preliminary \s=8 TeV L=19.7 fb⁻¹ ^{5 UL} (95%CL)/ م^{theo} a^{UL} (95%CL)/ σ^{theo} $BR(T \rightarrow tH)$ $BR(T \rightarrow tH)$ 0.9È 0.9E 0.8 0.8 0.7 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.2 -0,1 0,1 550 550 650 700 600 650 700 600 m_⊤ [GeV] m_⊤ [GeV] Solid black line corresponds to σ/σ_{theo} =1 **Excluded region:** upper left corner

Expected

Observed

Conclusions

- Search for top partner in events with the Higgs boson fully reconstructed in the gamma gamma decay mode
- Two optimized categories: full-hadronic / leptonic
- Observed exclusion for Top partner at 540 GeV (Expected 607 GeV), in the case $BR(T \rightarrow tH)=1$
- Interpretation of results extended to other scenarios
- Analysis under **combination with other channels** (different Higgs' decay channels, and T decay channels)

Back-up

Documentation

PAS: B2G-14-003

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2014/05/29 Head Id: 244099 Archive Id: 244247M Archive Date: 2014/05/28 Archive Tag: trunk

Search for pair production of vector-like partners of the top quark (T), with T \to tH($\to\gamma\gamma)$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/B2G14003TWiki http://cds.cern.ch/record/1709129?ln=en

Datasets and technicalities

• Analysis fully developed within the official Hgg framework (CMSSW_6_1_1)

Data

- Full 8 TeV dataset: 19.7 fb⁻¹ Jan22 ReReco
- Standard diphoton Trigger used for Hγγ (~100% efficiency for our signal) : HLT_Photon26_*_Photon18 seeded by L1 DoublePhoton OR HLT_Photon36_*_Photon22 seeded by L1 SinglePhoton

MC

- ttH (Pythia)
- TT: T \rightarrow tH, T \rightarrow tZ, T \rightarrow Wb official Madgraph samples Samples cover m₁: 500, 600, 700, 800, 900 GeV

Physics Objects

- Photons use all the latest Hgg energy corrections and selections (Jan22 ReReco):
 - Cut in categories (CiC) Super Tight working point, same as H→gg (other working points tried, no significant improvement to the analysis sensitivity)
- **Leptons** (e/μ) $(p_1 > 20 \text{ GeV})$:
 - electrons: MVA EGM ID, loose WP, pfISO
 - muons: cut-based MUO ID, tight WP, pfISO
- **Jets** are AK5PF:
 - $p_1 > 25 \text{ GeV}$, up to $|\eta| = 2.4$
 - Jet ID and loose cut-based PU ID
- CSV (combined secondary vertex) b-tagging (loose WP)

Analysis Optimization

• CS definition: inverted photon ID for leading or subleading photon (standard procedure used for Hgg exclusive categories)

 \rightarrow necessity to reweight photon kinematics in order to mimic standard sample (SS) kinematics with control sample's one (match p₁ and η spectra for the photons)

Weight($p_T(\gamma_1), p_T(\gamma_2), \eta_1, \eta_2$) = Weight($p_T(\gamma_1), \eta_1$) x Weight($p_T(\gamma_2), \eta_2$)

Analysis Optimization $TT \rightarrow THTH(\rightarrow yy)$

- Resonant background: $ttH(\rightarrow\gamma\gamma)$
- The main non-resonant backgrounds are:
 - Diphoton + jets; tt+yy, t+yy, tt+jets
 - MC of these backgrounds is not reliable (difficult for the presence of many legs in the final state)

For **Optimization**: Data driven bkg (Control Sample)

For Limit Extraction: Myy from sidebands

- Optimization performed with:
 - \rightarrow TT signal @ 700 GeV
 - \rightarrow data-driven **background**

Event Selection

- Optimize background rejection
- Select the working point which optimizes exclusion limit (including both resonant and non resonant background)
- Limit performed as a simple cut & count analysis in a window of 3 GeV around 125 GeV (1 FWHM region)
- Non resonant backgound extrapolated from **Data control sample** (using scale factor derived at preselection level)

		1
Variable	Hadronic channel	Leptonic channel
$p_{\mathrm{T}}(\gamma_1)$	$> \frac{3}{4}m_{\gamma\gamma} \mathrm{GeV}$	$> \frac{1}{2}m_{\gamma\gamma}$ GeV
$p_{ m T}(\gamma_2)$	35 GeV	25 GeV
n _{jets}	≥ 2	≥ 2
$H_{\rm T}$	$\geq 1000 \text{ GeV}$	\geq 770 GeV
leptons	0	≥ 1
b tags	≥ 1	-

Bkg estimation: bias study

Non-resonant bkg estimated through a fit to Myy:

 \rightarrow To extract signal we need to choose the background fit function

Standard Hgg procedure: bias study on data sidebands

- Truth models derived from bkg only fit
- Different fit models tested generating bkg only toys according to the truth models
- Fit function: **bias < 20%** for every mass point (with fewest degrees of freedom)

Bias =
$$\frac{N_{bkg}(fit) - N_{truth}(fit)}{\sigma_{fit}}$$

Leptonic Channel				
Fit function	Truth models			
	exp1	lau1	pol1	pow1
(exp1)	0.01	-0.06	0.18	0.06

Lantonia Channal

Hadronic Channel				
Fit function	Truth models			
	exp1	lau1	pol1	pow1
(exp1)	-0.05	0.03	-0.17	-0.00

• Bias < 20% means:

statistical uncertainty of the fit covers the systematic uncertainty on the knowledge of the truth function

For **both the hadronic and leptonic** channel, the **simple exponential** is chosen

Unbinned maximum-likelihood fit between 100-180 GeV

Window: 3 GeV around 125 GeV

Process	Hadronic	Leptonic
$T\overline{T}(m_{\rm T}=700~{\rm GeV})$	1.05	0.43
tīH	0.042	0.039
Background	$0.65\substack{+0.16 \\ -0.13}$	$0.11\substack{+0.07\\-0.03}$
Observed Data	2	0

No excess found in data wrt background-only hypothesis

Triangle Plots

As expected we are most sensitive to the region corresponding to BR(tH)=1