Z' physics: new bounds, searches and the role of AFB as discovery tool at the LHC

E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti, C. Shepherd-Themistocleous

School of Physics and Astronomy

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Overview

Introduction

- Model independent Drell Yan neutral channel searches
- State of art with LHC results at 8 TeV
- Predictions for LHC at 13 TeV
- Introducing the AFB observable
- > Finite width and interference effects
- Results
- > AFB in narrow and wide Z' scenarios
- Sources of uncertainties
- The role of AFB as a search tool
- Conclusions

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Modelling

Parametrization of the interaction

Low Energy Lagrangian:

$$SU(3)_{c} \otimes SU(2)_{V} \otimes U(1)_{em} \otimes U(1)_{Z'}$$

 $\mathcal{L} \supset g' Z'_{\mu} \bar{\psi} \gamma^{\mu} (a_{V} - a_{A} \gamma_{5}) \psi$

As the structure of the interaction is fixed, the free parameters are:

- <u>Fermions' chiral couplings</u> (gauge couplings can be absorbed into their definition)
- <u>Mass</u> and <u>Width</u> of the Z' boson (Including the latter enable us to explore finite width and interference effects)

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile 06/03/2015

2

Z' search @ LHC

LHC most recent results at 8 TeV

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste La Thuile

06/03/2015 **3**

Validating our code

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste La Thuile

06/03/2015 **4**

Limits for LHC@13TeV

Exclusion (Significance = 2) and Discovery (Significance = 5) limits

Forward – Backward Asymmetry

 $A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$

Keeping a fixed angle θ , we have the simplest definition for the AFB.

$$\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta$$
$$\sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta$$

But, in order to correctly define the Forward/Backward direction, we shall use instead θ^* that is the angle between incoming quark and the outgoing leptons in the qq centre of mass frame

In a Drell-Yan process, how to guess which proton carries the quark and which the antiquark?

The <u>boost of the dilepton system</u> can be used to discriminate the direction of the <u>incoming quark</u>, as we expect the latter to be much more energetic then the antiquark, which comes from the sea.

Following this prescription we can define the <u>reconstructed AFB</u> or **AFB***

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile 06/03/2015 6

Matrix element

With this the usual and cross

kind of interaction we end with
I form for the matrix element
s section as well
$$\sum_{i} \mathcal{M}_{i} \Big|^{2} = \frac{\hat{s}^{2}}{3} \sum_{i,j} |P_{i}^{*}P_{j}| \left[(1 + \cos^{2}\theta)C_{S}^{i,j} + 2\cos\theta C_{A}^{i,j} \right]$$

Cross section term

The two coefficients are defined by different combination of the couplings

$$C_{S}^{i,j} = (a_{V_{i}}a_{V_{j}} + a_{A_{i}}a_{A_{j}})_{L}(a_{V_{i}}a_{V_{j}} + a_{A_{i}}a_{A_{j}})_{Q}$$

$$C_{A}^{i,j} = (a_{V_{i}}a_{A_{j}} + a_{A_{i}}a_{V_{j}})_{L}(a_{V_{i}}a_{A_{j}} + a_{A_{i}}a_{V_{j}})_{Q}$$

Juri Fiaschi

spin, col

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

AFB term

Motivations

Features:

Consequence:

AFB as <u>diagnostic</u> tool

- AFB depends on different combination of the couplings, with respect to the cross section
- The shape of the AFB is affected by strong <u>interference</u> effects

- Complementary information about the <u>chiral couplings</u>, with respect to the cross section Rizzo : JHEP 0908 082 (2009)
- The model dependent shape of the AFB can help in distinguish between different models

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste La Thuile (

Motivations

Features:

Consequence:

AFB as <u>diagnostic</u> tool

- AFB depends on different combination of the couplings, with respect to the cross section
- The shape of the AFB is affected by strong <u>interference</u> effects

- Complementary information about the <u>chiral couplings</u>, with respect to the cross section Rizzo : JHEP 0908 082 (2009)
- The model dependent shape of the AFB can help in distinguish between different models

AFB as <u>search</u> tool

- It comes from the <u>ratio</u> of cross sections
- For both <u>narrow & wide</u> <u>resonances</u> AFB can be used together with the bump search

- Systematic uncertainties cancel (<u>PDFs</u>, luminosity, etc.)
- <u>Off-peak</u> effects due to interference are sizeable and can be observed

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

06/03/2015 **8**

Narrow resonance: E6-ŋ case

Interference Effects

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste La

La Thuile 06/03/2015

9

Narrow resonance: E6-I case

Interference Effects

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Wide resonance

Wide GSM-SM benchmark

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

06/03/2015 **11**

PDFs vs Statistic Uncertainties

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

06/03/2015

12

PDFs vs Statistic Uncertainties

Conclusions

- In the context of searching for a heavy neutral resonance (*Z'*), we choose to study the dilepton decay channel, as it is clean and we can perform precise measurements on both the final state leptons.
- From the angular distribution of the final state leptons we can determine the Forward-Backward Asymmetry. This observable presents key features:
 - Complementary information with respect to the cross section distribution about the <u>chirality</u> of the couplings between the *Z*' and the initial and final state fermions.
 - The shape of the AFB is <u>model dependent</u> and can be used to distinguish which theoretical model predicts a specific *Z'*.
 - In the case of <u>narrow resonances</u> AFB can be <u>combined</u> with the cross section to achieve discovery (or improve exclusion)
 - In the case of <u>wide resonances</u> the information coming from the cross section distribution can be lost in the background, or can only be interpreted in terms of <u>counting strategy</u>, while the AFB maintain a <u>definite shape</u> and can be used to identify a neutral resonance.
 - PDFs uncertainties are <u>comparable</u> with the statistic error in the cross section, while in the AFB, due to <u>cancellations</u>, the PDFs uncertainties are <u>sub dominant</u>
- We have developed and validated our code, derived <u>discovery/exclusion limits</u> for the **LHC-Run II** and demonstrated the role of AFB not only as a **Z'** post-discovery analysis tool, but also as a **Z'** <u>search tool</u>.

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste La

La Thuile 06/03/2015 **14**

Thank you!

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste La Thuile

06/03/2015 **15**

Drell-Yan

Neutral Channel Drell-Yan Z' search

Motivations:

Leptons in the final state are:

- Easy to detect
- Precise to measure
- Almost background-free

CTEQ6L1 PDFs were used

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Parameters

Table of couplings for narrow models:

U(1)'	Parameter	a_V^u	a^u_A	a_V^d	a^d_A	a_V^e	a^e_A	a_V^{ν}	a_A^{ν}
E6(g' = 0.462)	θ								
χ	0	0	-0.316	-0.632	0.316	0.632	0.316	0.474	0.474
ψ	0.5π	0	0.408	0	0.408	0	0.408	0.204	0.204
η	-0.29π	0	-0.516	-0.388	-0.129	0.388	-0.129	0.129	0.129
S	0.129π	0	-0.130	-0.581	0.452	0.581	0.452	0.516	0.516
Ι	0.21π	0	0	-0.5	0.5	0.5	0.5	0.5	0.5
N	0.42π	0	0.317	-0.157	0.474	0.157	0.474	0.316	0.316
GLR(g' = 0.592)	ϕ								
R	0	0.5	-0.5	-0.5	0.5	-0.5	0.5	0	0
B-L	0.5π	0.333	0	0.333	0	-1	0	-0.5	-0.5
LR	-0.130π	0.326	-0.459	-0.591	0.459	-0.06	0.459	0.199	0.199
Y	0.25π	0.589	-0.354	-0.118	0.354	-1.061	0.354	-0.354	-0.354
GSM(g'=0.762)	α								
SM	-0.072π	0.186	0.487	-0.336	-0.487	-0.035	-0.487	0.487	0.487
T3L	0	0.5	0.5	-0.5	-0.5	-0.5	-0.5	0.5	0.5
Q	0.5π	1.333	0	-0.667	0	-2	0	0	0

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Narrow resonance

Interference Effects

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Backup slide

Backup slide

Rapidity cuts

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Forward / Backward

Subtlety in the definition of "Forward" and "Backward":

In order to construct the asymmetry, we need to know which is the forward direction. But in a Drell-Yan process we don't know from which proton the quark/antiquark comes from.

General rule:

In this case of neutral process, we expect that <u>the dilepton longitudinal</u> <u>momentum</u> marks the direction of the <u>quark</u>, as the latter is supposed to be <u>more energetic</u> than the antiquark (which comes from the sea).

Dittmar : Phys.Rev.D55:161-166 (1997)

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Reconstruction

Reconstruction

The rapidity cuts alter <u>model</u> <u>dependence!</u>

With the convention adopted in the reconstruction procedure, the probability of choosing the right direction for the incoming quark is <u>flavour</u> <u>dependent</u>.

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Reconstruction

The rapidity cuts alter <u>model</u> <u>dependence!</u>

With the convention adopted in the reconstruction procedure, the probability of choosing the right direction for the incoming quark is <u>flavour</u> <u>dependent</u>.

Models with <u>different couplings</u> to u and d quarks have a <u>different behaviour</u> under the application of rapidity cuts

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

Backup slide

Partonic correct direction and luminosity

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

La Thuile

PDFs comparison

Wide resonance

Wide GSM-SSM benchmark

0.4

0.2

0.0∟ 0.5 A_{FB}

SM

AFR

 A_{FB}^{ID} w/o interf.

A_{FB}* w/o interf.

1.5

2.0

 $\sqrt{\hat{s}}$ [TeV]

La Thuile

2.5

1.0

Model = GSM - SSM

 $\sqrt{s} = 13 \text{ TeV}$

 $M_{Z'} = 1.5 \text{ TeV}$

 $\Gamma = 80\% M_{Z'}$

3.5

3.0

06/03/2015

the cross section can be confused with a normalization of the background, while the AFB maintain a <u>definite shape</u>

Juri Fiaschi

Les Rencontres de Physique de la Vallée d'Aoste

Wide resonance

