Les Rencontres de Physique de la Vallée d'Aoste, 1-7 III 2015

Indirect searches for dark matter particles with the Super-Kamiokande detector

Katarzyna Frankiewicz National Center For Nuclear Research

Indirect dark matter detection

- Search for the products of WIMP annihilation or decay

$$\begin{array}{ccc} q\overline{q}(c\overline{c},b\overline{b},t\overline{t},...)\\ \chi\chi \to & l\overline{l} & \to \to V, \gamma,\overline{e},\overline{p},\overline{H}_2\\ W^{\pm},Z,H \end{array}$$

Super-Kamiokande Water Cherenkov detector

Kamioka Observatory, Japan

Detector measures solar, atmospheric, cosmic and accelerator neutrinos 2

Super-Kamiokande collaboration

~6%

© Kamioka Observatory, ICRR, Univ, of Tokyo

Super-Kamiokande IV

T2K Beam Run 33 Spill 822275 Run 66778 Sub 585 Event 134229437 10-05-12:21:03:22 T2K beam dt = 1902.2 ns Inner: 1601 hits, 3681 pe Outer: 2 hits, 2 pe Trigger: 0x8000007 D_wall: 614.4 cm e-like, p = 381.8 MeV/c

Charge(pe)

- >26.7
 23.3-26.7
- 20.2-23.3
- 17.3-20.2
- 14.7-17.3
- 12.2-14.7
- 10.0-12.
- 8.0-10.0
- 6.2- 8.0
- 4.7-6.2
 3.3-4.7
- 2.2- 3.3
- 1.3- 2.2
- 0.7- 1.3
- 0.2- 0.7
- < 0.2

Detected Cherenkov light allow to reconstruct energy, direction and flavour of neutrino

Neutrinos at Super-Kamiokande

Neutrino sources

Dark Matter halo models

Moore & Kravtsov – extreme cases (to estimate the impact of halo model choice on the results)

- Analysis uses on-soufce/off-source method to estimate the background directly from the data
 - method independent of MC simulations and related systematic uncertainties
- DM simulation is used only to optimize analysis

Analysis results: DM annihilation Main result: Upper limits on allowed number of DM-induced events

Based on SK 1-4 data (1996-2014)

	Sample	Size	On-source	Off-source	▲ N sig	90% CL 🗛 sig
	FC Sub GeV	80	3628	3676	-48 ± 85.5	114.4
עע <	FC Multi GeV	30	233	251	-18±22	26.9
	PC	20	65	67	-2 ± 11.5	17.7
	UPMU	10	49.2	63.5	-14.3 ± 10.6	10.8
DD, VV VV ⁻ , –	ALL	35	2010.4	2161.1	-150.7±64.6	49.3
$\mu'\mu$		1	1		l I	

Energy [GeV]

10

90% CL upper limits on $<\sigma_v >$

+ halo model choice influence

12

90% CL upper limits on $<\sigma_v >$

Analysis results: DM decay

Upper limits on allowed number of DM-induced events

 ΔN sig 90% CL ΔN sig Sample Size **On-source Off-source** FC Sub GeV 80 3628 3676 -48 ± 85.5 114.4 FC Multi GeV 80 1490 1415 75±53.9 146.7 $\overline{\nu}$ PC 80 1049 978 130.2 71±45.0 UPMU 3143.6 80 3214.6 -71.0 ± 79.7 94.9 bb , W⁺W⁻, μ⁺μ⁻ ALL 80 9310.6 9283.6 27.0±136.4 241.6

Based on SK 1-4 data (1996-2013)

Expected WIMP signal shape for NFW profile:

90% CL lower limits on τ

16

Summary

 Dark Matter search is highly challenging field, the existing results are not conclusive, multi-messenger approach is very important

My analysis:

- Limits on WIMP induced neutrinos based on difference in number of events between on-source and off-source regions:
 - background is estimated directly from the data
- The optimal conditions (size of on-source region) for analysis are determined based on performed DM simulation
 - SK 1-4 data samples are used
 - Main result is model independent
 - Four annihilation/decay channels are investigated: $\chi \chi \rightarrow \nu \overline{\nu}$, bb, W⁺W⁻, $\mu^{+}\mu^{-}$
 - NFW, Moore and Kravtsov DM halo models are considered

Equatorial coordinate system

Declination (DEC)

angular distance of an object perpendicular to the celestial equator

Right ascension (RA)

angular distance of an object eastward along the celestial equator from the vernal equinox to the hour circle passing through the object

- Image of the sky in equatorial coordinate system
- This coordinate system does not rotate with the Earth, but remains fixed 21 against the background stars

Determination of the optimal size of the

on-source region

For NFW Profile :

Optimization of the S/\sqrt{B} ratio as a function of the distance from the GC

Angular resolution differs between various Event classes

PC

50000

40000

30000

20000

10000

Difference between true and reconstructed angular distance from GC

GC PC (tru-reco)

<u>Ajuuluuliyeedinu</u>

RMS.

