

Electroweak Physics (di-boson production) measurements with ATLAS

Konstantinos Bachas¹ On behalf of the ATLAS Collaboration

Les Rencontres de Physique de la Vallee d'Aoste La Thuile 2015

¹Aristotle University of Thessaloniki

Di-boson physics overview

• Diboson production cross-section measurements

- High energy test of Standard Model (SM) predictions at TeV scale
- Irreducible background to Higgs
- Sensitivity to new heavy particles decaying to diboson
- Anomalous Triple/Quartic Gauge Couplings (aTGCs,aQGCs)
 - Vector boson self-couplings fundamental prediction of the Electroweak Sector of the SM
 - Probe to new physics through deviations of measured cross sections from predictions

QCD and V+jets measurements: see Kristof Schmieden's talk!

Di-boson production at the LHC

- Measurement of di-boson processes involving combinations of W, Z and γ
 - $W^{\pm}W^{\mp}$, WZ, ZZ, W/Z γ , $W^{\pm}W^{\pm}$
- Measured mainly through their leptonic final states
 - Advantage: relatively low backgrounds
 - Disadvantage: low Branching Ratios
 - $BR(W \rightarrow hv) = 0.108, BR(Z \rightarrow h) = 0.03366$
- Small cross sections O(1-100pb)
- Gluon contribution up to ~10% depending on the channel

Common signatures and backgrounds

Signatures

Leptons/photons

 High-p_T, isolated, electrons/ muons and/or photons

• Z Bosons

• Invariant mass in windows around the Z pole

W Bosons

- Large Missing $E_{\rm T}$ to account for the neutrino
 - Calculated from jets, leptons and calorimetric clusters
- Transverse mass selection

Background

Estimated with data driven methods

• V+jets

- Genuine high-pt leptons from boson decay
- Leptons from heavy flavour decays
- Jets misidentified as leptons/photons
- Particles outside the detector acceptance → Missing E_T

- tt(bar) and single top
 - Prompt isolated leptons from W leptons
 - Large Missing ET

Di-boson processes

• Act as background for each other

Estimated from MC

Cross section measurements strategy

- "Cut and count" analysis yields observed events
- Background estimation from Data or/and MC
- Measurement of fiducial cross section
 - Defined as the phase space of the detector's acceptance + our selection requirements
 - Minimizes the extrapolation to unmeasured regions, more model independent

$$\sigma_{fid} = \frac{N_{data} - N_{bkg}}{C \cdot \int L dt}$$

N _{data}	Number of data events
N _{bkg}	Number of background events
L	Luminosity
BR	Branching Ratio
С	Efficiency corrections
A	Acceptance

- Extrapolate measurement to total phase space
- Optionally provide differential cross sections in fiducial volume
 - Distributions "unfolded" from detector effects

Wy, Zy production (I)

- Final states measured:

 - $\ell v \chi, \ell \ell \chi, v v \chi$

Backgrounds:

• W/Z + jets (dominant for leptonic channels), χ +jet, $W \rightarrow ev$ (dominant in vvy channel)

Systematic uncertainties dominate

• Photon ID, background normalization, jet energy scale

Selection Highlights

Require an isolated high-ET photon and isolated high-pT lepton(s), and/or MissingET

Suppress FSR cutting on angular separation of lepton and photon $\Delta R > 0.7$

Exclusive measurement vetoes jets with pT > 30GeV

Wy, Zy production (II)

- Inclusive Wy measurement above NLO theoretical prediction (MCFM) by 1-2 σ

- Discrepancy worst at high transverse $\mathsf{E}\gamma$ and jet multiplicity
 - Missing higher order QCD corrections
- Fair agreement for Zγ
- Interesting how these 7 TeV results compare to new NNLO calculations! (next slide)

Channel	Measurement (pb)	Theory (pb)
₩γ→ℓvγ	2.77 ±0.03(stat.) ±0.33 (syst.) ±0.14(lumi.)	1.96 ± 0.17
Ζγ→ℓℓγ	1.31 ±0.02(stat.) ±0.11(syst.) ±0.05(lumi.)	1.18 ±0.05
Ζγ→ννγ	0.133 ±0.013(stat.) ±0.02(syst.) ±0.005(lumi.)	0.156±0.012

Wy, Zy production (III)

- NNLO QCD corrections have sizeable effect
 - Corrections are higher for $W\pmb{\gamma}$ than $Z\pmb{\gamma}$
 - Wy : arXiv:1407.1618v1 [hep-ph]
 - Zɣ : Phys. Lett. B731 (2014) 204
- Better agreement with measurement now

	LO (fb)	NLO (fb)	NNLO (fb)	Measurement (fb)
σ _{Ζγ→ℓℓγ}	850.7 ± 0.2	1226.2 ± 0.4	1305 ± 3	1310 ± 20 (stat) ± 110 (syst) ± 50 (lumi)
σ _{₩γ→ℓνγ}	906.3 ± 0.3	2065.2 ± 0.9	2456 ± 6	2770 ± 30(stat) ± 330(syst) ± 140(lumi)

$W^{\pm}W^{\mp}$ production (I)

- Final states measured:
 - $\ell \pm \nu \ell \mp \nu$ ($\ell = e, \mu$) in 0-jet bin
- Backgrounds:
 - Top (15%), Drell-Yan (5%), W+jets (5%) and other dibosons
- Measurement is dominated by systematic uncertainties
 - ETmiss (2-4%)
 - Jet energy scale 2%
 - Jet veto requirement 4-5%
 - Background uncertainty 3-6%

Selection Highlights

2 isolated high-pT leptons and MissingET

Hard jet veto to reject tt and single-top events

Z veto (|mZ -mll| >15 GeV) to suppress Drell-Yan background in same flavour channels

W[±]W[∓] production (II)

- Measured cross section higher than SM prediction by ~2.1 σ
- NNLO corrections: Enhancement of cross-section by ~10% (arXiv:1408.5243)
- Resummation of large logs: Enhancement of cross-section can partially explain the excess (arXiv: 1407.4537, arXiv:1407.4481)

7 TeV 4.6 51.9 ± 2.0(stat.) ± 3.9(syst.) ± 2.0(lumi) 44.7 8 TeV 20.3 71.4 ± 1.2(stat.) ± 0.44(syst.) ± 0.22(lumi) 58.7	√s	∫£dt [fb⁻¹]	Measurement [pb]	Theory [pb]
8 TeV 20.3 $71.4 \pm 1.2(\text{stat.})^{+5.0}_{-4.4}(\text{syst.})^{+2.2}_{-2.1}(\text{lumi})$ 58.7	7 TeV	4.6	51.9 ± 2.0(stat.) ± 3.9(syst.) ± 2.0(lumi)	44.7
	8 TeV	20.3	71.4 ± 1.2(stat.) ^{+5.0} -4.4(syst.) ^{+2.2} -2.1(lumi)	58.7

March 5, 2015

W[±]Z production (I)

• Final states measured: $\ell \pm \nu \ell \pm \ell \mp$ ($\ell = e, \mu$)

Backgrounds:

- Z+jets (~15%), ZZ (~5%),Top (~4%),W/Z+γ (~3%)
- Z+jets, and Top backgrounds estimated with data driven methods
- ZZ and W/Z γ estimated from MC

W[±]Z production (II)

- Measurement at 8 TeV dominated by systematic uncertainties
 - Systematic from data driven background estimation is the prominent one
- Preliminary results compatible with SM expectation (from MCFM)

√s	∫£dt [fb⁻¹]	Measurement [pb]	Theory [pb]
7 TeV	4.6	19.0+1.4-1.3(stat.)+0.9-0.9(syst.)+0.4-0.4(lumi)	17.6 + ^{1.1} -1.0
8 TeV	13	20.3 ^{+0.8} -0.7(stat.) ^{+1.2} -1.1(syst.) ^{+0.7} -0.6(lumi)	20.3±0.8

ZZ production

- Final states measured:
 - $\ell \pm \ell \mp \ell \pm \ell \mp$ ($\ell = e, \mu$) and $\ell \pm \ell \mp \nu \nu$ (7 TeV only)
- Main backgrounds (significant mainly for $\ell \pm \ell \mp \nu \nu$)
 - W/Z+jets, Top, WW, WZ
 - Estimated with data-driven methods

- Measurement is dominated by statistical uncertainties
 - Systematic dominated by lepton identification and resolution

• Results compatible with SM predictions

√s	∫£dt [fb⁻¹]	Measurement [pb]	Theory [pb]
7 TeV	4.6	6.7 ^{+0.7} -0.7(stat.) ^{+0.4} -0.3(syst.) ^{+0.3} -0.3(lumi)	5.89 +0.22-0.18
8 TeV	20.3	7.1 ^{+0.5} -0.4(stat.) ^{+0.3} -0.3(syst.) ^{+0.2} -0.2(lumi)	7.2 +0.3-0.2

15

W[±]W[±]+2jets production (I)

- Same charge WWjj scattering (VBS) is a key process to experimentally probe the SM nature of EWSB
- WWjj production process classification
 - Pure EWK WWjj production (VBS contribution)
 - Strong + Ewk WWjj production (inclusive)
- W±W± has the best ratio of σ(VVjj-Ewk)/σ(VVjjstrong)

Characteristic signature

2 forward jets with high dijet mass

Jets well separated in rapidity

W[±]W[±]+2jets production (II)

- Final states: $\ell \pm \nu \ell \pm \nu + jj$ ($\ell = e, \mu$)
- Main backgrounds:
 - WZ+2jets , W γ +2jets: estimated from MC
 - tt(bar) and single Z production through charge misidentification : estimated from data
- Systematics dominated by jet energy scale and WZ+2jets normalization

W[±]W[±]+2jets production (III)

	Measurement [fb]	Theory [fb] (PowhegPythia8)	measurement significance
Inclusive	2.1 ± 0.5(stat) ± 0.3(syst)	1.5 ± 0.11	4.5
Ewk- only	1.3 ± 0.4(stat) ± 0.2(syst)	0.95 ± 0.06	3.6

First evidence for EWK VV → VV scattering !

Anomalous gauge boson interactions

- The non-abelian nature of the EWK sector of the SM predicts the self-interaction of gauge bosons in the form of triple and quartic couplings
- Deviations from SM are parametrized, in terms of anomalous couplings using effective Lagrangian (SM+higher dimension operators)

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{d} \sum_{i} \frac{c_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$
dimension d is calle of Λ

Λ: scale of New Physics

TGC

Coupling	Parameter	Channel
WWγ	$\lambda_{\mathbf{y}}, \Delta \kappa_{\mathbf{y}}$	WW,W y
WWZ	$\lambda_Z, \Delta \kappa_Z, \Delta g_1^Z$	WW,WZ
ZΖγ	h ₃ ^z ,h ₄ ^z	Zγ
Ζγγ	h ₃ ¥,h ₄ ¥	Zγ
ΖγΖ	$f_{40}Z, f_{50}Z$	ZZ
ZZZ	f ₄₀ ¥,f ₅₀ ¥	ZZ

Characteristics

Anomalous couplings can manifest as increase cross sections and modification of kinematic distributions

- Anomalous triple or quartic coupling terms (aTGCs, aQGCs) are in the effective Lagrangian
- Di-boson production is modified by certain dimension-6 and dimension-8 operators

QGC

Coupling	Parameter	Channel
WWZZ,WWWW	a4,a5	WW,WZ

Summary of aTGC limits

Oct 2014					Oct 2014				
WW	8		ATLAS Limits CMS Prel. Limits D0 Limit LEP Limit		WWZ	· · · ·		ATLAS Limits CMS Prel. Limits Do Limit LEP Limit	
Δ1 ~		—— Wγ	-0.410 - 0.460 4.6 fb ⁻¹		$\Delta \kappa_{7}$			-0.043 - 0.043	4.6 fb ⁻¹
Δκγ		Wγ	-0.380 - 0.290 5.0 fb ⁻¹		2			-0.090 - 0.103	4.0 ID^{-1}
	H	WW	-0.210 - 0.220 4.9 fb ⁻¹			 ⊨•⊣	LEP Combination	-0.074 - 0.051	0.7 fb^{-1}
	⊢I	WV	-0.210 - 0.220 4.6 fb ⁻¹		2	⊢ −−−1	WW	-0.062 - 0.059	4.6 fb ⁻¹
		WV	-0.110 - 0.140 5.0 fb ⁻¹		^λ Z	⊢	WW	-0.048 - 0.048	4.9 fb ⁻¹
	⊢oI	D0 Combinat	tion -0.158 - 0.255 8.6 fb ⁻¹				WZ	-0.046 - 0.047	4.6 fb ⁻¹
	⊢●1	LEP Combina	ation -0.099 - 0.066 0.7 fb ⁻¹				WV	-0.039 - 0.040	4.6 fb ⁻¹
2		Wγ	$-0.065 - 0.061 + 4.6 \text{ fb}^{-1}$				WV D0 Combination	-0.038 - 0.030	0 5.0 fb '
λ_{γ}	⊨ – I	Wγ	$-0.050 - 0.037 - 5.0 \text{ fb}^{-1}$			⊢•-1	LEP Combination	-0.059 - 0.044	0.010 0.7 fb ⁻¹
	⊢	ww	$-0.048 - 0.048 - 4.9 \text{ fb}^{-1}$		٨a ^Z		WW	-0.039 - 0.052	2 4.6 fb ⁻¹
		WV	$-0.039 - 0.040 4.6 \text{ fb}^{-1}$		Δg_1		WW	-0.095 - 0.095	4.9 fb ⁻¹
	· ·	W/\/	$-0.038 - 0.030 - 5.0 \text{ fb}^{-1}$			⊢−−−−	WZ	-0.057 - 0.093	4.6 fb⁻¹
		D0 Combinat	-0.036 - 0.030 - 0.014			\vdash	WV	-0.055 - 0.071	4.6 fb ⁻¹
	For	LED Combina	-0.050 - 0.044 8.0 D			$\vdash \circ \dashv$	D0 Combination	-0.034 - 0.084	8.6 fb ⁻¹
			allon -0.059 - 0.017 0.7 fb				LEP Combination	-0.054 - 0.021	0.7 fb ⁻
Nov 2013	777		ATLAS Limits		ZyZ,Zy	XX		ATLAS Limits CMS Prel. Limits CDF Limit	
822,					μ.γ.		Ζγ	-0.015 - 0.016	6 4.6 fb⁻¹
fγ	⊢−−−−	ZZ	-0.015 - 0.015 4.6 fb ⁻¹		n ₃	н	Zγ	-0.003 - 0.003	5.0 fb ⁻¹
۲ ₄	H	ZZ	-0.004 - 0.004 19.6 fb ⁻¹			—	Żγ	-0.004 - 0.004	19.5 fb ⁻¹
	н	ZZ (2l2v)	-0.004 - 0.003 5.1, 19.6 fb ⁻¹		⊢		· Ζγ	-0.022 - 0.020	5.1 fb^{-1}
۶Z	⊢−−−−	ZZ	-0.013 - 0.013 4.6 fb ⁻¹	-	. 7		Ζγ	-0.013 - 0.014	4.6 fb ⁻¹
1 ₄	н	ZZ	-0.004 - 0.004 19.6 fb ⁻¹		h ₃	ы	Zγ	-0.003 - 0.003	4.0 fb^{-1}
	н	ZZ (2l2v)	-0.003 - 0.003 5.1, 19.6 fb ⁻¹		-	⊢ I	-1 Ζγ	-0.003 - 0.004	10.010
c۲		ZZ	-0.016 - 0.015 4.6 fb ⁻¹		L		Zγ	-0.020 - 0.021	5.1 fb^{-1}
t ₅	⊢ −−1	ZZ	-0.005 - 0.005 19.6 fb ⁻¹		γ	· · · ·	 Ζγ	-0.020 - 0.021	0.110
	н	ZZ(2 2v)	-0.004 - 0.004 5.1, 19.6 fb ⁻¹		h₄x100	· ·	=1 7v	-0.003 - 0.003	5.0 fb ⁻¹
-7		77	-0.013 - 0.013 4 6 fb ⁻¹		т	···	∠; 7v	-0.001 - 0.001	5.0 fb ⁻¹
f ₅	· · ·	77	-0.005 - 0.005 19.6 fb ⁻¹		7	· ·	 Ζν		1 / 6 fb ⁻¹
-	· ·	ZZ (212v)	$-0.004 - 0.003 5 1.19 \text{ fb}^{-1}$		h₄x100	 ц	-, 7v		50fb ⁻¹
					7		- 1 Zv		5.0 ID 10
-0.5	0	0.5	1 1.5 x10 ⁻¹				ĭ	-0.003 - 0.003	מוכ.פו י
ч		aTG	C Limits @95% C.L.		-0.5	0	0.5 aTGC L	.imits @95	×10 ⁻¹ % C.L

March 5, 2015

First limits on aQGC

- Measurement of VBS allows for setting limits on anomalous quartic couplings
- Deviations from SM parametrized in terms of parameters $\alpha4$ and $\alpha5$
 - Limits on aQGCs extracted from $W^{\pm}W^{\pm}$ jj cross section in VBS phase space

parameter	observed limit	expected limit
α4	-0.139, 0.157	-0.104, 0.116
α5	-0.229, 0.244	-0.180, 0.199

Summary

- Excellent performance of the LHC has provided high quality/quantity data in Run-1
- Di-boson measurements with ATLAS
 - Fiducial, total and differential cross sections have been measured at 7 and 8 TeV.
 - Very accurate measurements of a few percent level
- TGC limits consistent with the SM
 - Sensitivity for aTGC limits expected to increase with increased centre-of-mass energy and integrated luminosity
- Evidence for the same sign WW +2jets electroweak production with a significance of 3.6 σ
- First limits on aQGCs
- In Run-2 and Run-3 at 13,14 TeV, Di-boson, Tri-boson, VBS, and quartic gauge couplings will become the main probe for New Physics !

Backup Slides

ssWW: selection requirements

- Lowest order:W±W± + 2jets, there is no SM inclusive W±W±
- for EW+strong measurement ("inclusive signal phase space")
 - exactly 2 high pT same-sign leptons with pT > 25 GeV in $|\eta|$ < 2.5
 - $m_{\ell\ell} > 20 \text{ GeV}, \Delta R_{\ell\ell} > 0.3$
 - \geq 2 jets with p_T>30 GeV, $|\boldsymbol{\eta}|$ < 4.5
 - ETmiss > 40 GeV (from W decays)
 - reduces Z+jets with charge mis-identification
 - veto events containing b-jets
 - reduces tt⁻ events (lepton from b-decays)
 - Z-veto in ee channel: |mee mZ | > 10 GeV
 - reduces Z+jets with charge mis-identification
 - mjj >500GeV

for EW-only measurement ("VBS signal phase space")

• additional cut on $|\Delta Y_{ii}| > 2.4$

ssWW: Background composition

• prompt background:

- 3 or more prompt leptons
 - WZ/Y*+jets (Sherpa) normalized to NLO with VBFNLO (uncertainty ~14% and 11% in inclusive and VBS regions
 respectively)
 - ZZ+jets (Sherpa) theory uncertainty 19%
 - tt + W/Z (Madgraph+Pythia8) theory uncertainty 30%
 - tZj (Sherpa) negligible

Conversions

- prompt photon conversion
 - Wy (Alpgen+Herwig/Jimmy, Sherpa for Ewk) total theory uncertainty 17%
- charge mis-ID due to bremsstrahlung with conversion (data driven)
 - Z/γ *+jets
 - Drell-Yan and tt⁻ decays

Other non-prompt (data-driven)

- leptons from hadron decays in jets
 - W+jets
 - semi-leptonic tt decays
 - di-jet events

ssWW: Yields and interference effect

	$e^{\pm}e^{\pm}$	Inclusive region $e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$	VBS region $e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Prompt	3.0 ± 0.7	6.1 ± 1.3	2.6 ± 0.6	2.2 ± 0.5	4.2 ± 1.0	1.9 ± 0.5
Conversions	3.2 ± 0.7	2.4 ± 0.8		2.1 ± 0.5	1.9 ± 0.7	
Other nonprompt	0.61 ± 0.30	1.9 ± 0.8	0.41 ± 0.22	0.50 ± 0.26	1.5 ± 0.6	0.34 ± 0.19
$W^{\pm}W^{\pm}jj$ Strong	0.89 ± 0.15	2.5 ± 0.4	1.42 ± 0.23	0.25 ± 0.06	0.71 ± 0.14	0.38 ± 0.08
$W^{\pm}W^{\pm}jj$ Electroweak	3.07 ± 0.30	9.0 ± 0.8	4.9 ± 0.5	2.55 ± 0.25	7.3 ± 0.6	4.0 ± 0.4
Total background	6.8 ± 1.2	10.3 ± 2.0	3.0 ± 0.6	5.0 ± 0.9	8.3 ± 1.6	2.6 ± 0.5
Total predicted	10.7 ± 1.4	21.7 ± 2.6	9.3 ± 1.0	7.6 ± 1.0	15.6 ± 2.0	6.6 ± 0.8
Data	12	26	12	6	18	10

- Interference between electroweak and strong production is studied at leading-order accuracy using SHERPA
- Interference increases the combined strong and electroweak cross section by 12% in the inclusive region and 7% in the VBS region
- Included in EW W±W±jj prediction

ssWW: Systematic uncertainties

Systematic Uncertainties $ee/e\mu/\mu\mu$ (%) - Inclusive SR					
Background		Signal			
Jet uncertainties	11/13/13	Jet uncertainties	5.7		
Theory WZ/γ^*	5.6/7.7/11	Theory $W^{\pm}W^{\pm}jj$ -ewk	4.7		
MC statistics	8.2/5.9/8.4	Theory $W^{\pm}W^{\pm}jj$ -strong	3.1		
Fake rate	3.5/7.1/7.2	Luminosity	2.8		
OS lepton bkg/	5.9/4.2/-	MC statistics	3.5/2.1/2.8		
Conversion rate Theory $W + \gamma$	2.8/2.6/-	E_T^{miss} reconstruction	1.1		
E_T^{miss} reconstruction	2.2/2.4/1.8	Lepton reconstruction	1.9/1.0/0.7		
Luminosity	1.7/2.1/2.4	b-tagging efficiency	0.6		
Lepton reconstruction	1.6/1.2/1.2	trigger efficiency	0.1/0.3/0.5		
b-tagging efficiency	1.0/1.1/1.0				
Trigger efficiency	0.1/0.2/0.4				

Systematic Uncertainties $ee/e\mu/\mu\mu$ (%) - VBS SR					
Background		Signal			
Jet uncertainties	13/15/15	Theory $W^{\pm}W^{\pm}jj$ -ewk	6.0		
Theory WZ/γ^*	4.5/5.4/7.8	Jet uncertainties	5.1		
MC statistics	8.9/6.4/8.4	Luminosity	2.8		
Fake rate	4.0/7.2/6.8	MC statistics	4.5/2.7/3.7		
OS lepton bkg/	5.5/4.4/-	E_T^{miss} reconstruction	1.1		
E_T^{miss} reconstruction	2.9/3.2/1.4	Lepton reconstruction	1.9/1.0/0.7		
Theory $W + \gamma$	3.1/2.6/-	b-tagging efficiency	0.6		
Luminosity	1.7/2.1/2.4	trigger efficiency	0.1/0.3/0.5		
Theory $W^{\pm}W^{\pm}jj$ -strong	0.9/1.5/2.6				
Lepton reconstruction	1.7/1.1/1.1				
b-tagging efficiency	0.8/0.9/0.7				
Trigger efficiency	0.1/0.2/0.4				

WW/WZ: Signal modelling

- Signal events are generated with mc@nlo interfaced to Herwig with CT10 PDF
- NLO cross sections from mc@nlo: 43.7 ± 1.9 pb and 17.4 ± 1.1 pb for WW and WZ, respectively.
 - Using factorisation and renormalisation scales equal to $\sqrt{(m^2 W + p^2 T, W + m^2 V + p^2 T, V)/2}$
- gg → WW and H → WW processes are not included in the signal samples nor in the cross-section prediction,
 - contributions are small compared to the expected sensitivity of this measurement
 - gg \rightarrow W W would increase the total predicted WV cross section by about 2–4%.
 - $H \rightarrow WW$ process would increase the WV cross section by about 5%,
 - After applying all event selection criteria would only increase the expected number of signal events by about 2%
- $\gamma\gamma \rightarrow WW$ process is neglected
- NNLO corrections would increase the total W V cross section by about 4% (arXiv:1408.5243)

WW/WZ: Backgrounds

Dominant background: W/Z +jets

- Modelled using alpgen with cteq6l1 PDF
- Scaled to the QCD NNLO inclusive cross section times branching fraction for a single lepton species
- Shapes from MC
- Rates from data-driven methods

tt⁻ events produced using mc@nlo with CT10 PDF

- shapes and rates from MC
- calculated at NNLO in QCD including resummation of next-to-next-to-leading logarithmic (NNLL)
- Single-top events from the Wt and s-channel processes are generated using mc@nlo with CT10
- ZZ background generated using herwig with MRST PDF
- Multijet (5.3% and 3.7% in e and mu channels)
 - Rate and shape estimated with data-driven methods

Data-driven method: Estimate ETmiss shape from control samples

Use ETmiss shape in template fit and obtain multijet and W/Z+jet rate

- Exactly one high-pT lepton
 - suppresses the Z+jets and tt⁻ backgrounds
- Isolated leptons with pT>25 GeV, |d0/ σ(d0)| < 3 (10) for muons (electrons), |z0| <1 mm
- ETmiss > 30 GeV, m_T, W > 40 GeV
 - highly suppress the multijet background
- Exactly two jets with pT > 25 GeV and |η|
 < 2.8 (pT > 30 GeV for the leading jet)
- Azimuthal angular separation between the leading jet pT and the ETmiss vectors must fulfil |Δφ(ETmiss,j1)| > 0.8
- |Δη(j1,j2)| < 1.5, ΔR(j1, j2) > 0.7 if the pT of the dijet system is less than 250 GeV
- 25 < mjj < 250 GeV

Signal processes	e	μ
WW	1435 ± 70	1603 ± 79
WZ	334 ± 23	370 ± 26
Background processes		
W+ jets	$(107 \pm 21) \times 10^3$	$(116 \pm 23) \times 10^3$
Z+ jets	$(55 \pm 11) \times 10^2$	$(46.3 \pm 9.3) \times 10^2$
$t\bar{t}$	$(47.2 \pm 7.1) \times 10^2$	$(47.2 \pm 7.1) \times 10^2$
Single-top	$(20.2 \pm 3.0) \times 10^2$	$(20.5 \pm 3.1) \times 10^2$
Multijet	$(67 \pm 10) \times 10^2$	$(50.5 \pm 7.6) \times 10^2$
ZZ	19.2 ± 3.8	21.1 ± 4.2
Total SM prediction	$(128 \pm 17) \times 10^3$	$(135 \pm 19) \times 10^3$
Total Data	127650	134846

WW/WZ:Cross section extraction

$$\sigma_{\text{fid}} = \sum_{\ell=e,\mu} \frac{N_{\ell}^{WV}}{\mathcal{L} \cdot D_{\text{fid},\ell}}, \qquad D_{\text{fid},\ell} = f_{\text{fid}}^{WW} \cdot C_{\ell}^{WW} + (1 - f_{\text{fid}}^{WW}) \cdot C_{\ell}^{WZ}$$

 $\sigma_{\text{tot}} = \sum_{\ell=e \ \mu} \frac{N_{\ell}^{WV}}{\mathcal{L} \cdot D_{\text{tot},\ell}}, \qquad D_{\text{tot},\ell} = f_{\text{tot}}^{WW} \cdot C_{\ell}^{WW} \cdot \mathcal{B}_{\ell}^{WW} \cdot A_{\ell}^{WW} + (1 - f_{\text{tot}}^{WW}) \cdot C_{\ell}^{WZ} \cdot \mathcal{B}_{\ell}^{WZ} \cdot A_{\ell}^{WZ}$

$$\sigma_{\rm fid} = 1.37 \pm 0.14 \; (\text{stat.}) \pm 0.37 \; (\text{syst.}) \; \text{pb}$$

• $D_{fid,I}$ account for the fact that WW $\rightarrow Ivjj$ and WZ $\rightarrow Ivjj$ contribute to the signal yield with different cross sections, acceptances and correction factors

- f^{ww} represents the ratio of the WW fid to the WW + W Z fiducial cross sections
 - Fixed to the SM value of 0.82

WW/WZ: Systematic uncertainties

- W/Z+jets rate and shape modelling estimated from scale variations,crosssection, MC modelling, JES, and JER uncertainties
- Finite size of the MC event samples limits the precision with which the mjj templates are known
- The multijet rate and shape uncertainties are determined in validation region with modified selection criteria
- Main impact of the JES and JER is on the shapes of the background distributions
- Signal shape modelling assessed by considering alternative templates from Pythia

Source	$\sigma_{ m fid}$	$\sigma_{ m tot}$
	N_{ℓ}^{V}	WV
Data statistics	±	10
MC statistics	±	12
W/Z + jets rate and shape modelling	±	17
Multijet shape and rate	±	:8
Top rate and initial/final-state radiation shape modelling	±	:6
Jet energy scale (background and signal shapes)	±	-9
Jet energy resolution (background and signal shapes)	±	11
WV shape modelling	±	:5
	$D_{\rm fid}$	$D_{\rm tot}$
JES/JER uncertainty	± 6	± 6
Signal modelling	± 4	± 5
Jet veto scale dependence	-	± 5
Others (loss of spin-corr information, lepton uncertainties, PDF)	±1	± 4
Luminosity	±1	1.8
Total systematic uncertainty	± 27	± 28

Summary of the % contributions to the systematic uncertainties on the cross sections

WW: Theoretical predictions

- Standard Model prediction is : 58.7 +3.0 _-2.7 (pb)
- Contributions neglected in this prediction:
 - $gg \rightarrow WW (LO \rightarrow NNLO+NNLL k-factor)$ up to +2.8 pb
 - Electroweak corrections -0.5 pb
 - **YY**-induced WW +0.5 pb
 - Vector boson scattering <+0.5 pb
 - Double parton interaction +0.04 pb

WW: Selection requirements

Leptons	Jets	ETmiss	pTmiss
Isolated	anti-kt, R=0.4	vectorial sum of calorimeter deposits	vectorial sum of tracks pileup-robust
pT>25(20) GeV leading (subleading)	pT>25 GeV	Emiss ×sin ∆φ(met_j,I) > 15(45) GeV em (ee,mm)	pmiss > 20 (45) GeV em (ee,mm)
η <2.5	η <4.5	if $\Delta \phi > \pi/2$, then Emiss,rel is equal to Emiss	η <2.5
transverse impact parameter significance < 3.0			

Event selection

- Single or dilepton triggers
- |mll mZ | > 15 GeV for same flavour channels
- mll > 10 GeV for emu channel

Channel	$e^\pm\mu^\mp$	e^+e^-	$\mu^+\mu^-$
Observed Events	5067	594	975
Total expected events	$4376 \pm 26 \pm 280$	$536 \pm 10 \pm 42$	$873 \pm 12 \pm 63$
MC WW signal	$3224 \pm 10 \pm 248$	$346\pm3\pm32$	$610\pm5\pm56$
Top(data-driven)	$609\pm18\pm52$	$92\pm7\pm8$	$127\pm9\pm11$
W+jets(data-driven)	$220 \pm 15 \pm 112$	$14\pm5\pm9$	$3\pm5\pm6$
Z+jets (data-driven)	$166\pm3\pm26$	$55\pm1\pm23$	$96\pm2\pm27$
Other dibosons (MC)	$157\pm4\pm31$	$30\pm2\pm5$	$39\pm1\pm5$
Total background	$1152 \pm 24 \pm 130$	$190\pm9\pm26$	$264\pm11\pm30$

WW:Systematic uncertainties

- Data and MC control samples of Z→ I+I− events are used to determine the data-to-MC correction factor for the efficiency of the jet-veto requirement
 - $\boldsymbol{\epsilon}_{data,WW} = \boldsymbol{\epsilon}_{MC,WW} \times fZ$
 - $fZ = \epsilon_{data,Z} / \epsilon_{MC,Z} = 0.990 \pm 0.029$ (exp) ± 0.032 (theo).
- The overall systematic uncertainty on the WW selection acceptance (A_{WW} ×C_{WW}) is 5.9% for the combination of the three dilepton channels

Sources	$e^{\pm}\mu^{\mp}$	e^+e^-	$\mu^+\mu^-$
C _{WW} experimental uncertainties			
Pileup	1.3%	1.9%	2.0%
e trigger efficiency	0.3%	2.5%	_
μ trigger efficiency	0.3%	_	2.8%
Muon MS resolution	0.0%	_	0.1%
Muon ID resolution	0.5%	_	1.5%
Muon scale	0.1%	_	0.4%
Muon efficiency	0.4%	_	0.8%
Muon isolation/IP	0.6%	_	1.1%
Electron resolution	0.0%	0.2%	_
Electron energy scale	0.4%	1.4%	_
Electron efficiency	0.9%	2.0%	_
Electron isolation/IP	0.2%	0.4%	_
Jet vertex fraction	0.2%	0.2%	0.2%
Jet energy scale	2.6%	2.6%	2.6%
Jet energy resolution	2.3%	2.2%	2.9%
$E_{\rm T}^{\rm miss}$ soft term resolution	0.3%	0.3%	0.5%
$E_{\rm T}^{\rm miss}$ soft term scale	2.3%	4.2%	3.8%
$p_{\rm T}^{\rm miss}$ soft term resolution	0.1%	0.0%	0.2%
$p_{\rm T}^{\rm miss}$ soft term scale	0.3%	0.6%	0.5%
Total experimental uncertainties	3.7%	6.3%	6.3%
C _{WW} theoretical uncertainties			
Jet-veto requirement (theory)	3.2%	3.2%	3.2%
PDF	0.4%	0.6%	0.1%
Scale	0.6%	1.7%	0.7%
Total theoretical uncertainties	3.3%	3.7%	3.3%
Total (exp.+theo.)	5.0%	7.3%	7.1%
$A_{WW} \times C_{WW}$ theoretical uncertainties			
Jet-veto requirement (theory)	3.3%	3.3%	3.3%
PDF	1.3%	1.6%	0.8%
Scale	1.5%	2.0%	1.8%
Total theoretical uncertainties	3.9%	4.2%	3.8%
Total (exp.+theo.)	5.4%	7.6%	7.4%

WW: Data-driven backgrounds

Top background (~15 %):

 Jet veto efficiency applied to MC events to obtain normalization determined from a data control sample of top events with large scalar sum of lepton and jet pT

W+jets background (eµ 4% / ee+µµ 1%):

- extract normalization and shape
- efficiencies for fake and real leptons for loose and tight cuts
- determine signal and background components with matrix method

Z+jets background (eµ 0.3% / ee+µµ 1%):

• fit to data control region to extract normalization

W/Zy selection requirements

- Single lepton or photon triggers:
 - Electrons: 20-22 GeV
 - Muons: 18 GeV
 - Photons: 80 GeV
- $|d_0|/\sigma_{d_0} < 10(3) e(\mu)$
- $|z_0| < 1mm$
- Calorimeter isolation in cone $\Delta R < 0.3$ less than 6 GeV (e)
- p_T isolation in cone $\Delta R < 0.3$ less than 15% of the μp_T
- $W\gamma$ modelled with ALPGEN (CTEQ6L1)
- $Z\gamma, \nu\nu\gamma$ modelled with Sherpa (CTEQ6.6M)

Cuts	$pp ightarrow \ell u \gamma$	$pp \to \ell^+ \ell^- \gamma$	$pp \rightarrow \nu \bar{\nu} \gamma$	
Lepton	$p_{\rm T}^\ell > 25 { m ~GeV}$	$p_{\rm T}^\ell > 25~{ m GeV}$		
	$ \eta_{\ell} < 2.47$	$ \eta_\ell < 2.47$	_	
	$N_{\ell} = 1$	$N_{\ell^+} = 1, N_{\ell^-} = 1$	$N_\ell=0$	
	$p_{\mathrm{T}}^{\nu} > 35 ~\mathrm{GeV}$		—	
Boson	—	$m_{\ell^+\ell^-} > 40~{\rm GeV}$	$p_{\rm T}^{\nu\bar{\nu}} > 90 \text{ GeV}$	
Photon	$E_{\rm T}^{\gamma} > 15 { m ~GeV}$	$E_{\rm T}^{\gamma} > 15 { m ~GeV}$	$E_{\rm T}^{\gamma} > 100 \text{ GeV}$	
	$ \eta^{\gamma} $	$ <2.37,\Delta R(\ell,\gamma)$:	> 0.7	
_		$\epsilon_h^p < 0.5$		
Jet	$E_{ m T}^{ m je}$	$^{ m t}$ > 30 GeV, $ \eta^{ m jet} $ <	< 4.4	
$\Delta R(e/\mu/\gamma,{ m jet})>0.3$				
	Inclusive :	$N_{\rm jet} \ge 0$, Exclusiv	$e: N_{jet} = 0$	

W/Zy systematics

Source	$pp \to e \nu \gamma$	$pp \to \mu \nu \gamma$	$pp \rightarrow e^+ e^- \gamma$	$\gamma \ pp \to \mu^+ \mu^- \gamma$	$pp \to \nu \bar{\nu} \gamma$
Relative systematic uncer	tainties on	the signal	correction f	Eactor $C_{V\gamma}$ [%]	
γ identification efficiency	6.0(6.0)	6.0(6.0)	6.0(6.0)	6.0~(6.0)	5.3(5.3)
γ isolation efficiency	1.9(1.8)	1.9(1.7)	1.4(1.4)	1.4(1.4)	2.8(2.8)
Jet energy scale	0.4(2.9)	0.4(3.2)	- (2.2)	- (2.4)	0.6~(2.0)
Jet energy resolution	0.4(1.5)	0.6(1.7)	- (1.7)	- (1.8)	0.1 (0.5)
unassociated energy cluster in $E_{\rm T}^{\rm miss}$	1.5(1.6)	0.5~(1.0)	- (-)	- (-)	0.3~(0.2)
μ momentum scale and resolution	- (-)	0.5~(0.4)	- (-)	1.0 (0.8)	- (-)
EM scale and resolution	2.3(3.0)	1.3(1.6)	2.8(2.8)	1.5 (1.5)	2.6(2.7)
Lepton identification efficiency	1.5(1.6)	0.4(0.4)	2.9(2.5)	0.8(0.8)	- (-)
Lepton isolation efficiency	0.8~(0.8)	0.3~(0.2)	2.0(1.6)	0.5~(0.4)	- (-)
Trigger efficiency	0.8~(0.1)	2.2(2.1)	0.1 (0.1)	$0.6\ (0.6)$	1.0(1.0)
Total	7.1(8.0)	6.8(7.8)	7.6(7.9)	6.5(7.1)	6.6(7.0)