

Results from Daya Bay

Patrick Tsang

Lawrence Berkeley National Lab. (on behalf of the Daya Bay Collaboration) Mar 2, 2015 - La Thuile

Outline

- Introduction to Daya Bay experiment
- Detector performance
- Recent results
 - Measurement of neutrino oscillation parameters
 - Measurement of reactor antineutrino rate and spectrum
 - Search for sterile neutrinos

The Daya Bay Experiment

Far Hall 1615 m from Ling Ao I 1985 m from Daya Bay 350 m overburden

> 3 Underground Experimental Halls

Entrance —

Ling Ao Near Hall 481 m from Ling Ao I 526 m from Ling Ao II 112 m overburden

Daya Bay Near Hall 363 m from Daya Bay 98 m overburden

Daya Bay Cores

Ling Ao II Cores Ling Ao I Cores

■ 17.4 GW_{th} power

8 operating detectors

160 t total target mass

Reactor Antineutrino Oscillation

Antineutrino Detector (AD)

8 functionally identical detectors reduce systematic uncertainties

	3 zone cylindrical vessels					
	Liquid	Mass	Function			
Inner acrylic	Gd-doped liquid scint.	20 t	Antineutrino target			
Outer acrylic	Liquid scintillator	20 t	Gamma catcher			
Stainless steel	Mineral oil	40 t	Radiation shielding			

192 8 inch PMTs in each detector

Top and bottom reflectors increase light yield and flatten detector response

Muon Tagging System

2.5 meter thick two-section water Cherenkov detector

- tagging cosmic muons
- shielding of gammas and neutrons from surrounding materials

RPC

- covers water pool to provide further muon tagging

Daya Bay Experimental Hall

Detectors Inside Water Pool

Water Pool Covered by RPC

Timeline of Daya Bay Experiment

Relative Energy Scale

< 0.2% variation in reconstructed energy between ADs

Energy Model

Two major sources of non-linearity

- scintillator response: modeled with Birks formula and Cherenkov fraction
- electronics: modeled with MC and single channel FADC measurement

Combined fit with mono-energetic gamma peaks and ¹²B beta-decay spectrum.

Cross-validated with ²¹⁴Bi, ²⁰⁸TI beta-decay spectrum, Michel electron spectrum and standalone bench-top Compton scattering measurement.

Event Selection

Prompt positron energy: 0.7 < Ep < 12 MeVDelayed neutron energy: 6 < Ed < 12 MeVNeutron capture time: $1 < \Delta t < 200 \mu \text{sec}$

- Reject spontaneous PMT light emission
- Select only isolated pairs
- Veto after muon events to suppress cosmogenic backgrounds

Low Background Measurement

Background	Near	Far	Uncertainty	Method
Accidentals	1.4%	2.3%	negligible	statistically calculated from uncorrelated singles
⁹ Li/ ⁸ He	0.4%	0.4%	50%	measured with after-muon events
²⁴¹ Am- ¹³ C	0.03%	0.2%	50%	MC benchmarked with single gamma and strong AmC source
Fast neutrons	0.1%	0.1%	30%	measured from AD/water/RPC tagged muon events
$^{12}C(\alpha, n)^{16}C$	0.01%	0.1%	50%	calculated from measured radioactivity

Over 1 million antineutrino interactions !

Strongly correlated with reactor operation conditions.

Near v.s Far Comparison

Results of Oscillation Parameters

- Consistent with muon neutrino disappearance results
- Comparable precision.

Publication in preparation

Results of nH Analysis

- 217 days of data (6 detectors)
- rate deficit at far site gives
 - $\sin^2 2\theta_{13} = 0.083 \pm 0.018$
- independent and consistent result with nGd analysis
- spectrum distortion is consistent with oscillation interpretation
- spectral analysis in progress ...

Reactor Antineutrinos Measurements

-

0.992 ± 0.023 (ILL + Vogel)

Publication in preparation

Observed antineutrino spectrum is

inconsistent with traditional predictions.

Search for Light Sterile Neutrinos

Results of Sterile Neutrino Search

Phys. Rev. Lett. 113, 141802 (2014)

Summary of Daya Bay Results

- the most precise measurement of $sin^22\theta_{13}$ and Δm^2_{ee}
- independent measurement of $sin^2 2\theta_{13}$ with nH capture
- absolute measurement of reactor antineutrino flux
 - consistent with previous measurements
 - inconsistent with model predictions
- measured reactor antineutrino spectrum
 - inconsistent with traditional model predictions

More results are coming, stay tuned.

Asia (21)

IHEP, Beijing Normal Univ., Chengdu Univ. of Sci. and Tech., CGNPG,CIAE, Dongguan Univ. of Tech., Nanjing Univ., Nankai Univ., NCEPU, Shandong Univ., Shanghai Jiao tong Univ., Shenzhen Univ., Tsinghua Univ., USTC, Xi'an Jiaotong Univ., Zhongshan Univ., Univ. of Hong Kong, Chinese Univ. of Hong Kong, National Taiwan Univ., National Chiao Tung Univ., National United Univ.

North America (17)

BNL, LBNL, Iowa State Univ., RPI, Illinois Inst. Tech., Princeton, UC-Berkeley, UCLA, Univ. of Cincinnati, Univ. of Houston, Univ. of Wisconsin, William & Mary, Virginia Tech., Univ. of Illinois-Urbana-Champaign, Siena, Temple Univ, Yale

Europe (2)

JINR, Dubna, Russia; Charles University, Czech Republic

South America (1)

Catholic Univ. of Chile

Thank you!

Backup Previous Reactor Antineutrino Measurements

Backup Recent Reactor Antineutrino Model Prediction

Data Summary

	Data Summary						
=	6-AD Period —	AD1	AD2	AD3	AD4	AD5	AD6
_	IBD candidates	101998	103137	93742	13889	13814	13645
	DAQ live time(day)	190.989		189.623		189.766	14
	ε_{μ}	0.8234	0.8207	0.8576	0.9811	0.9811	0.9808
	ε_m	0.9741	0.9745	0.9757	0.9744	0.9742	0.974
	Accidentals(/day)	9.53 ± 0.10	9.29 ± 0.10	7.40 ± 0.08	2.93 ± 0.03	2.87 ± 0.03	2.81 ± 0.03
	Fast neutron(/day)	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01	
	9Li/8He(/day)	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14	
	AmC correlated(/day)	0.27 ± 0.12	0.25 ± 0.11	0.27 ± 0.12	0.22 ± 0.1	0.21 ± 0.1	0.21 ± 0.09
	${}^{13}C(\alpha, n){}^{16}O(/\text{day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03
_	IBD rate(/day)	652.38 ± 2.58	662.02 ± 2.59	580.84 ± 2.14	73.04 ± 0.67	72.71 ± 0.67	71.88 ± 0.67
_	side-by-side ibd rate ratio	0.985 =	± 0.005				

8-AD Period

	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7	
IBD candidates	202461	206217	193356	190046	27067	27389	27032	27419	
DAQ live time(day)	374.447		378.407		372.685				
ε_{μ}	0.8255	0.8223	0.8574	0.8577	0.9811	0.9811	0.9808	0.9811	
ε_m	0.9746	0.9749	0.9759	0.9756	0.9762	0.976	0.9757	0.9758	
Accidentals(/day)	8.62 ± 0.09	8.76 ± 0.09	6.43 ± 0.07	6.86 ± 0.07	1.07 ± 0.01	0.94 ± 0.01	0.94 ± 0.01	1.26 ± 0.01	
Fast neutron(/day)	0.78 ± 0.12		0.54 ± 0.19		0.05 ± 0.01				
9Li/8He(/day)	2.8 ± 1.5		1.7 ± 0.9		0.27 ± 0.14				
AmC correlated(/day)	0.20 ± 0.09	0.21 ± 0.10	0.18 ± 0.08	0.22 ± 0.10	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.07 ± 0.02	
${}^{13}C(\alpha, n){}^{16}O(/\text{day})$	0.08 ± 0.04	0.07 ± 0.04	0.05 ± 0.03	0.07 ± 0.04	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	0.05 ± 0.03	
IBD rate(/day)	659.58 ± 2.12	674.36 ± 2.14	601.77 ± 1.67	590.81 ± 1.66	74.33 ± 0.48	75.40 ± 0.49	74.44 ± 0.48	75.15 ± 0.49	
side-by-side ibd rate ratio	0.978 ± 0.004		1.019 ± 0.004						

Expected: AD1/AD2 = 0.982; AD3/AD8 = 1.012