AMS-02 on the ISS Results and perspectives

B.Bertucci Perugia University & INFN

Le Rencontres de Physique de la Valleé d'Aoste XXIX edition, 1 March, 2015

AMS: Alpha Magnetic Spectrometer

- AMS-02 is a particle physics detector devoted to the precision measurement of cosmic radiation in the near Earth orbit in the GeV – TeV energy range
- It has been installed on the International Space Station (ISS) on May 19, 2011
- It will take data data for the rest of the life of the ISS (2024)

The AMS Collaboration

AMS-02 : (part) of the Collaboration @ NASA-JSC

4

PART 1 : The scientific objectives

AMS measurements

→ charged cosmic rays (GV-TV) → γ rays (E>1GeV)

01/03/15

B.Bertucci - AMS-02 Results and Perspe

Fundamental physics & Antimatter :

Primordial origin (Signal: anti-nuclei)

Dirac's Nobel speech

"We must regard it rather as an accident that the Earth [...] contains a preponderance of negative electrons and positive protons. It is quite possible that for some stars it is the other way about."

The Quest for Dark Matter

Universe content

visible matter 5%

dark matter 27%

ANTI-MATTER & DARK MATTER ANTI-MATTER & DARK MATTER

WIMP as the responsible of Dark Matter (?) Indirect DM search \rightarrow search for (RARE IN CR) products from their annhilation....

But you should know what you expect in the ISM !!

Knowledge of cosmic background

e⁺, p are produced in the CR interactions with the ISM

Information on Cosmic Ray Interactions and Propagation can be provided by the accurate measurement of nuclear species e.g. B/C

 $C + (p,He) \rightarrow B + \dots$

Anti-matter & Exotic sources (DM ?)

AMS Objectives according to some blogs...

http://www.rumormillnews.com/cgi-bin/archive.cgi?read=204750

...Shuttle Endeavor's official mission is to haul a deliberately-mislabeled "Alpha Magnetic Spectrometer" (AMS-02) to the International Space Station and install it. NASA claims that the AMS-02 is a state-of-the-art particle physics detector. In actuality the AMS-02 is an advanced extreme-energy neutral-particle-beam space weapon intended to shoot down Star Visitor craft (UFOs). And instead of the International Space Station, Shuttle Endeavor will deliver the AMS-02 Star Wars weapon to a secret military space station, also in orbit....

••••

You are invited to join in a Joint Psychic Exercise to address these problems.

We will focus on one or both of two things. First is to direct telekinetic, electrical-pulse, disruptive-magnetic, and/or other energies to deactivate the AMS-02 neutral-particle-beam weapon and render it inoperative. Thus there will be nothing useful to deliver to the military space station.

Objectives

Fundamental physics & Antimatter :

- Primordial origin (anti-nuclei ?)
- Exotic sources a.k.a DARK MATTER (positrons, anti-p, anti-D?,gammas)

✓ The CR composition and energy spectrum (how to understand the beam)

- Sources & acceleration : Proton and He
- Propagation in the ISM: (nuclear and isotopic composition)

Requirements

✓ Particle identification and p/E measurement up to TeV:

- e/p separation at the 10⁴ level by means of independent detectors
- Z : redundant measurements to evaluate fragmentation along the detector
- Charge sign: matter to anti-matter separation (magnetic field!)

Statistics

- acceptance & efficiency
- Exposure time

PART 2 : The experimental challenge Detector & Operation

AMS: A TeV precision, multipurpose spectrometer

B.Bertucci - AMS-02 Results and Perspectives

Redundant measurements of incoming particles: full coverage of anti-matter & CR physics

600 GeV electron

A HEP detector located in an hostile environment

AMS: the facts

5 m x 4 m x 3m

• 7.5 tons

300k readout channels

• More than 600 microprocessors reduce the data rate from 7 Gb/s to 10 Mb/s

> Total power consumption < 2.5 kW

Test....for all detectors: Before assembly : Beam test, Thermal, Vibration, TVT,EMI After assembly : EMI, TVT, Beam Test

ves 01/03/15

May 19, 2011: AMS installation completed

B.Bertucci - AMS 02 Results Perspect

sults and 01/03/15 spectives

44

21

AMS on ISS

Payload Operation Control Center (POCC) @ CERN

24/24 hours

All along the year...no technical stops...

Orbital DAQ parameters

The Thermal environment

Thermal environment

Seasonal effects on external Tracker planes

Alignment accuracy of the 9 Tracker layers

To date AMS collected over 60 billion events

(This is much more than all the cosmic rays collected in the last 100 years.)

Results:

... going to the % accuracy in CR physics

Published:

- 1. Positron Fraction (0.5-350 [2013] 0.5-500 GeV [2014])
- 2. Electron (0.5--700~GeV) and Positron Fluxes (0.5--500~GeV)
- **3. All electrons Flux** (0.5 GeV 1 TeV)

in 2015:

- 1.proton, he fluxes
- 2.anti-proton
- 3.B, C, Li, O ...ratio / fluxes

e⁻/e⁺ selection in AMS

-TRD:

identify the particle as e⁺/e⁻ rejecting the hadronic hypothesis

-TOF:

- main trigger
- down going relativistic particle
- Z=1

-TRACKER:

- Identify charge sign (e⁻/e⁺)
- Z=1

-ECAL:

- identify the particle as e⁺/e⁻/γ rejecting the hadronic hypothesis
- measurement of energy

e/p separation in ECAL

e/p separation in ECAL

e/p separation in TRD

20 layers of fiber fleece radiators interleaved with 80:20 Xe/Co₂ straw tubes.

Entries

Rigidity (GV)

The Positron fraction : e⁺/(e⁺ + e⁻)

No fine structures are observed, no anisotropies, slope suggests a maximum?
Positron fraction @ high energies

Minimal empirical model

Describe electron and positron fluxes as a sum of a **diffuse component** and a **common source** with a cutoff energy : $\gamma_{e} - \gamma_{e} = -0.56 \pm 0.03$

 $\gamma_{e} - \gamma_{s} = 0.72 \pm 0.04$

 $C_{e+}/C_{e-}=0.091\pm0.001$

 $C_{\rm s}/C_{\rm e^-} = 0.0061 \pm 0.0009$

$$\Phi_{e^{+}} = C_{e^{+}} E^{-\gamma e^{+}} + C_{s} E^{-\gamma s} e^{-E/E_{s}}$$

$$\Phi_{e^{-}} = C_{e^{-}} E^{-\gamma e^{-}} + C_{s} E^{-\gamma s} e^{-E/E_{s}}$$

$$\int_{01/03/15}^{\gamma_{e^{-}} - \gamma_{s} = 0.72 \pm 0.04$$

$$C_{e^{+}}/C_{e^{-}} = 0.091 \pm 0.001$$

$$\int_{1/E_{s}}^{\gamma_{e^{-}} - \gamma_{s} = 1.84 \pm 0.58 \text{ TeV}^{-1}$$
B.Bertucci - AMS-02 Results and Perspectives

01/03/15

Physics origin of the source term ?

- 1) Particle origin: Dark Matter
- 2) Astrophysics origin: Pulsars, SNRs
- 3) Secondaries: peculiarities of propagation

>300 references to the first AMS publication in 22 months..

Electron fluxes

The e⁻ and e⁺ fluxes

- 1. Both the electron flux and the positron flux are significantly different in their magnitude and energy dependence.
- 2. Both spectra cannot be described by single power laws.
- 3. The **spectral indices** of electrons and positrons **are different**.
- 4. Both change their behavior at ~30GeV.
- 5. The **rise in the positron fraction** from 20 GeV **is due to an excess of positrons**, not the loss of electrons (the positron flux is harder).

01/03/15

The (e⁺ + e⁻) Flux

The flux is smooth and it is consistent with a single power law above 30 GeV.

Conclusions

AMS is the Cosmic Rays observatory of the next decade

- The observed positron excess may imply a heavy Dark Matter WIMP particle or a new mechanism of acceleration in the pulsars: more statistics and measurements in complementary channels are needed
- Accurate measurements of the CR primary components and of antiprotons are been performed

AMS

SINA

More data...more fun !

STAY TUNED !

Thanks for your attention

BACKUP

Analysis: the template method

- 1. The *ecal classifier* is used to *remove most of the protons with high efficiency on positrons*
- 2. Reference spectra (or templates) are built for
 - protons and electrons \rightarrow from data
 - CC spillover and interactions \rightarrow from MC in the variables **E/p** and in **TRD likelihood**
- 3. The templates are *fit to data*, in each energy bin, to obtain the relative contributions
- This method maximizes the signal efficiency, since no further cut is explicitely applied after ecal classifier

fit to data

- Fit on E/p (left) and on TRD Likelihood (right)
- The fit is repeated at each energy bin

e⁺ + e⁻ flux measurements with AMS

... Taking into account also the knowledge of the energy scale....

Electron Anisotropy

The incoming direction of electrons above 16 GeV in galactic coordinates yields $\delta \leq 0.01$ at the 95% confidence level

Positron Anisotropy

The incoming direction of positrons above 16 GeV in galactic coordinates yields $\delta \le 0.03$ at the 95% confidence level

What is needed?

Leptophilic dark matter or astrophysical sources ??

- Shape of the excess accurately measured over an extended energy range
- Knowledge of "cosmic background"

Dark Matter model with intermediate state

M. Cirelli, M. Kadastik, M. Raidal and A. Strumia , Nucl. Phys. B873 (2013) 530

Acceleration in SNRs

P. Mertsch and S. Sarkar, Phys.Rev. D 90 (2014) 061301(R)

Production in Pulsars

M. DiMauro, F. Donato, N. Fornengo, R. Lineros, A. Vittino, JCAP 1404 (2014) 006

Measurement of the flux of electrons and positrons

$$\Phi_{e^{\pm}}(E) = \frac{N_{e^{\pm}}(E)}{A_{eff}(E) \cdot \mathcal{E}_{trig}(E) \cdot \mathsf{T}(E) \cdot \Delta E}$$

 $\begin{array}{l} \mathsf{N}_{e\pm} & \text{is the number of electron or positron events} \\ \boldsymbol{\epsilon}_{trig} & \text{is the trigger efficiency} \\ \mathsf{T} & \text{is the exposure time} \\ \mathsf{A}_{eff} & \text{is the effective acceptance} & \mathsf{A}_{eff} = \mathsf{A}_{geom} \cdot \boldsymbol{\epsilon}_{sel} \cdot \boldsymbol{\epsilon}_{id} \cdot (1 + \delta) \end{array}$

 A_{geom} is the geometrical acceptance, $\approx 550 \text{ cm}^2 \text{sr}$ ε_{sel} is the event selection efficiency ε_{id} is the e[±] identification efficiency δ is a minor correction from the comparison between

data and Monte Carlo (-2% at 10Gev to -6% at 700 GeV). The error on $(1+\delta)$ is ~2.5

Lower energy limit for single power law (E^γ) description

Study intervals with starting energies E_{start}, and ending at the highest energy.

Split a interval into two sections by any boundary E_{bound}, fit with single power law for each section. Determine the significance between the difference of γ_a and γ_b

The limit is defined by the lowest E_{start} that gives consistent spectral indices at the 90% C.L. for any boundary yields Positrons: 27.2 GeV and Electron: 52.3 GeV

Spectral indices (E^γ) of electron and positron fluxes

Observations:

- 1. Both spectra cannot be described by single power laws.
- 2. The spectral indices of electrons and positrons are different.
- 3. Both change their behavior at ~30GeV.
- 4. The rise in the positron fraction from 20 GeV is due to an excess of positrons, not the loss of electrons (the positron flux is harder).

EXAMPLE:

Minimal Model Fit to the data

Simultaneous fit to

- a) Positron Fraction from 2GeV
- b) Electron + Positron from 2GeV
- $(\gamma_{e-} \gamma_{e+})$, $(\gamma_{e-} \gamma_s)$, C_{e+} , C_{e-} , C_s , E_s are constant
- γ_{e-} is energy dependent below ~15 GeV.

Diffuse FluxSource Flux $\Phi_{e^+} = C_{e^+}E^{-\gamma_{e^+}} + C_sE^{-\gamma_s}e^{-E/E_s}$ Fit to b) Electron + Positron Flux from 2 GeV $\Phi_{e^-} = C_{e^-}E^{-\gamma_{e^-}} + C_sE^{-\gamma_s}e^{-E/E_s}$ Fit to b) Electron + Positron Flux from 2 GeV $\Phi_{e^-} = C_{e^-}E^{-\gamma_{e^-}} + C_sE^{-\gamma_s}e^{-E/E_s}$ Fit to b) Electron + Positron Flux from 2 GeV

$$\begin{split} & \begin{array}{lll} \text{Diffuse Flux} & \text{Source Flux} \\ \Phi_{e^+} = C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s} \\ \Phi_{e^-} = C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s} \end{split}$$

Prediction from fit it to a) Positron Fraction and b) Electron + Positron Flux

$$\begin{split} & \begin{array}{ll} \text{Diffuse Flux} & \text{Source Flux} \\ \Phi_{e^+} = C_{e^+} E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s} \\ \Phi_{e^-} = C_{e^-} E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s} \end{split}$$

Prediction from fit it to a) Positron Fraction and b) Electron + Positron Flux

$$\begin{split} & \underset{\Phi_{e^+}}{\text{Diffuse Flux}} & \underset{C_{e^+}E^{-\gamma_{e^+}}}{\text{Source Flux}} \\ & \Phi_{e^+} = C_{e^+}E^{-\gamma_{e^+}} + C_s E^{-\gamma_s} e^{-E/E_s} \\ & \Phi_{e^-} = C_{e^-}E^{-\gamma_{e^-}} + C_s E^{-\gamma_s} e^{-E/E_s} \end{split}$$

Prediction from fit it to a) Positron Fraction and b) Electron + Positron Flux

Dark Matter Models

- 1) L. Feng, R.Z. Yang, H.N. He, T.K. Dong, Y.Z. Fan and J. Chang Phys.Lett. B728 (2014) 250
- 2) M. Cirelli, M. Kadastik, M. Raidal and A. Strumia , Nucl. Phys. B873 (2013) 530
- 3) M. Ibe, S. Iwamoto, T. Moroi and N. Yokozaki, JHEP 1308 (2013) 029
- 4) Y. Kajiyama and H. Okada, Eur. Phys. J. C74 (2014) 2722
- 5) K.R. Dienes and J. Kumar, Phys.Rev. D88 (2013) 10, 103509
- 6) L. Bergstrom, T. Bringmann, I. Cholis, Dan Hooper, C. Weniger, Phys.Rev.Lett. 111 (2013) 171101
- 7) K. Kohri and N. Sahu, Phys.Rev. D88 (2013) 10, 103001
- 8) P. S. Bhupal Dev, D. Kumar Ghosh, N. Okada, I. Saha, Phys.Rev. D89 (2014) 095001
- 9) A. Ibarra, A.S. Lamperstorfer, J. Silk, Phys.Rev. D89 (2014) 063539
- 10) Y. Zhao and K.M. Zurek, JHEP 1407 (2014) 017

11)

Astrophysical sources

- 1) T. Linden and S. Profumo, Astrophys.J. 772 (2013) 18
- 2) P. Mertsch and S. Sarkar, Phys.Rev. D 90 (2014) 061301
- 3) I. Cholis and D. Hooper, Phys.Rev. D88 (2013) 023013
- 4) A. Erlykin and A.W. Wolfendale, Astropart. Phys. 49 (2013) 23
- 5) P.F. Yin, Z.H. Yu, Q. Yuan, X.J. Bi, Phys.Rev. D88 (2013) 2, 023001
- 6) A.D. Erlykin and A.W. Wolfendale Astropart. Phys. 50-52 (2013) 47
- 7) E. Amato, Int.J.Mod.Phys.Conf.Ser. 28 (2014) 1460160
- 8) P. Blasi, Braz.J.Phys. 44 (2014) 426
- 9) D. Gaggero, D. Grasso, L. Maccione, G. DiBernardo, C Evoli, Phys.Rev. D89 (2014) 083007
- 10) M. DiMauro, F. Donato, N. Fornengo, R. Lineros, A. Vittino, JCAP 1404 (2014) 006
- 11)

Secondary production

- 1) R.Cowsik, B.Burch, and T.Madziwa-Nussinov, Ap.J. 786 (2014) 124
- 2) K. Blum, B. Katz and E. Waxman, Phys.Rev.Lett. 111 (2013) 211101

Time of Flight System

4 Layers of scintillation counter

Silicon Tracker

Silicon Tracker

- 9 layers of double-sided micro-strip silicon sensors
- Spatial accuracy in bending direction: ~10 μm

Purpose:

- Measurement of rigidity (R=p/q) (MDR~2 TV)
- Measurement of the sign of charge: **detection of anti-matter**

Charge measurement :

Particle Charge Measurement

Carbon Fragmentation to Boron in Upper TOF Rigidity 10.6 GV

Boron and Carbon: Sample composition

Particles Identified as Boron in the Inner AMS show signals compatible with higher charges on the 1st

Rigidity ~ 200 GV

Boron Rigidity=187 GV

Carbon Rigidity=215 GV

Run/Event 1329086299/ 747549

Boron-to-Carbon ratio

Tracker Thermal Control System

