Top quark physics cross section and mass

Michele Gallinaro

- Introduction
- Cross section measurements
- Mass measurements

19 eyts

Role of top quark physics

- Top quark physics after the Higgs discovery
 - Special role in EWSB mechanism?
 - Does it play a role in non-SM physics?
 - Are the couplings affected?
 - Main background for many NP searches
- Monitoring of production mechanism
- Interpretation of m_{top}: top, W, Higgs masses
- Are properties consistent with our understanding of EWSB?
- Is there any sign of NP in top production/decay?

Cross section measurements

7 TeV

8 TeV

Dilepton channel

- Branching ratio (BR) ~5%
- Background: small
- Clean final state
 - two leptons + ≥2 jets + MET
 - kinematic variables
- Signal visible w/without b-tagging
- Measure cross section:
 - ee, $\mu\mu$, e μ final states
 - -btag (CSV): eff 85%, misID 10%
 - Cut and count
- Main systematics: JES, lepton ID, (pileup, b-tag, signal modeling)

 $\sigma_{
m t\bar{t}} = 239 \pm 2\,(
m stat.) \pm 11\,(
m syst.) \pm 6\,(
m lum.)\,
m pb$ $\pm 5\%$

b-jet multiplicity

5

JHEP 02(2014)024

Tau_h+lepton final state

PLB 739(2014)23

dominant syst.: τ fakes, b-tag

Is there a charged Higgs?

JHEP 07(2012)143, CMS-HIG-12-052, CMS-HIG-14-020, CMS-HIG-13-026

 If anomalous tau/lepton production in ttbar decays there may be contribution from charged Higgs

Yields in agreement with expectations ⇒ set limits m_H: 80-160 GeV $\mathcal{B}(t \rightarrow bH^+) < 1.2-0.6\%$ 200-600 GeV $\sigma(pp \rightarrow \bar{t}(b)H^+) < 4-1 \text{ pb}$

All-hadronic: cross section

- Fully hadronic final state (BR~46%)
- Six jets and no leptons in the final state
- Reconstruct ttbar system and fit with least χ^2 method
 - reconstruct both W bosons
 - $-m_{top1}=m_{top2}$ are free parameters
 - b-jets are taken as b-quark candidates
 - take permutation with smallest χ^2
- Multijet QCD is main background (from data)
 - Use same selection without b-tag reg.
 - Re-weigh mass spectrum from anti-tagged sample
- Templates are inputs for likelihood fit for cross section measurement
 - Signal and background templates
 - Signal fraction is a free parameter

 $\sigma_{
m t\bar{t}}=139\pm10\,(
m stat.)\pm26\,(
m syst.)\pm3\,(
m lum.)\,
m pb$

Dominant syst.: JES, b-tag

Michele Gallinaro - "Top quark physics: production and mass" - La Thuile - March 1-7, 2015

 $\pm 20\%$

Cross sections

- Cross section measurements provide test of pQCD predictions
- Standard "candle":
 - ttbar is a dominant background for NP searches
- Comparison in different channels may provide constraints on BSM

Cross sections (cont.)

CMS-TOP-14-016

Collider	$\sigma_{ m tot}~[m pb]$	scales [pb]	pdf [pb]
Tevatron	7.164	+0.110(1.5%) -0.200(2.8%)	+0.169(2.4%) -0.122(1.7%)
LHC 7 TeV	172.0	+4.4(2.6%) -5.8(3.4%)	+4.7(2.7%) -4.8(2.8%)
LHC 8 TeV	245.8	+6.2(2.5%) -8.4(3.4%)	+6.2(2.5%) -6.4(2.6%)
LHC 14 TeV	953.6	+22.7(2.4%) -33.9(3.6%)	+16.2(1.7%) -17.8(1.9%)

±3-5%

Differential cross sections

EPJC 73(2013) 2339, CMS-TOP-12-027

- Measure differential cross section
 - Test perturbative QCD
 - Test BSM scenarios (Z' decays, etc) with narrow resonance
 - Improve ttbar modeling and reduce uncertainties
- Correct for detector effects and acceptances
- CMS sees softer top p_{T} in data, agreement with ATLAS at high p_{T}
 - Due to momentum reshuffling, P. Nason, indico.cern.ch/event/ 301787
 - FSR shower changes mass of final state partons. Light parton shower can build sizeable mass, and t/tbar do not radiate (reduced momenta to conserve energy)
- NNLO might be able to solve issue
- Short term solution: consider difference as uncertainty

Cross section in the R measurement

- Focused on measurement of R:
- Dilepton final state

$$R = \frac{BR(t \to Wb)}{BR(t \to Wq)} \approx |V_{tb}|^2$$

- Use profile likelihood
 Svet upg : DDE_tther mode
- Syst. unc.: PDF, ttbar modeling, etc.

$$\sigma(t\bar{t}) = 238 \pm 1 \text{ (stat.)} \pm 15 \text{ (syst.) pb} \pm 6\%$$

- Measure R by comparing number of ttbar events with 0, 1 and 2 b-tags
- Fully "data-driven" background determination
 - Use wrong assignment in m_{lb} distribution
- b-tagging multiplicity vs. R, ϵ_{b} , ϵ_{q}

 $|V_{\rm tb}| > 0.975$ at 95% CL

ttbar+jet cross section

- Direct measurement of typical bkg to ttH coupling
- Anomalous tt+jets could signal BSM final states
- Study ttbar with associated jet production
 - Dilepton events (≥4 jets, at least 2 b-jets)
 - Order jets by b-tag discriminator value
 - Ratio of number of events obtained from data by fitting the b-tagging discriminator distributions
 - Cross section measured in the visible (full) phase space (p_T>20,40 GeV)

 $\sigma_{
m t\bar{t}b\bar{b}}/\sigma_{
m t\bar{t}jj}=0.022\pm0.003\,
m (stat)\pm0.005\,
m (syst)$

- Results compatible (1.6 σ) with NLO calculation
- Dominant systematics (ttbar modeling and JES) cancel in the ratio
 - Remaining uncertainties from b-(mis)tag rate

ttV (V=γ,Z,W)

CMS-TOP-13-011, EPJC 74(2014)3060

Multi-top production

JHEP 11(2014)154, JHEP 01(2014)163

- Production of 4 tops is an attractive scenario in a number of new physics models
- The SM cross section is ~1fb
- Use lepton+jets final state
- Combination of kinematical variables and multivariate techniques
- Data are consistent with bkg expectations
- Set upper limit cross section 32fb @95%CL
- Search for same-sign dileptons
- Several models considered
- Consider multiple search regions defined by MET, hadronic energy, number of (b-) jets, and p_T of the leptons in the events

Top quark mass: why do we care?

- Top is the only fermion with the mass of the order of EWSB scale
- Discovered Higgs boson fits well with precise determinations of $m_{\rm W}$ and $m_{\rm top}$
 - Highly fine-tuned situation
 - ~1GeV is all it takes to tip the scales
- Run2 will likely allow for discrimination between SM and MSSM scenario
- The fate of the Universe might depend on Δm_{top} ~1 GeV

Lepton+jets final state

• Best channel to measure m_t

-well defined final state (1 lepton, 1v, 2b $W_{qq'}$)

• Select ttbar events, define observable

- $-hadronic decays (m_t, m_W)$
- No optimization ⇒get incorrect parton-jet assignment

• Kinematic fit: constrain W mass, topantitop masses

- In-situ JES calibration
- Goodness of fit
- Event-by-event weight
- -42% correct, 21% wrong, 37% unmatched
- Also use info from incorrect assignments

CMS-TOP-14-001

Lepton+jets final state (cont.)

Я

- Extract top mass and JSF
- kinematic fit + "ideogram" method combine event-per-event likelihood
 - Calculate likelihood from templates and observed m_t, m_W
 - For each event (point in the m_t/JSF plane)
 - Interpret each assignment as correct/wrong/ unmatched
 - Maximize full likelihood to measure m_t and JSF
- Not one single dominant systematic uncertainty ±0.4%

 $m_{\rm t} = 172.04 \pm 0.19 \, ({\rm stat.+JSF}) \pm 0.75 \, ({\rm syst.}) \, {\rm GeV}$

JSF = 1.007 ± 0.002 (stat.) ± 0.012 (syst.).

Top mass in dileptons

EPJC 72(2012)2202, TOP-14-010

- Under-constrained system (2 neutrinos)
- Event selection similar to cross section measurement (require MET)
 - Reconstruct event kinematics with full event kinematics (KINb method)
 - Matrix element weighting (AMWT): use analytical solutions for m_{top} hypotheses
- Measurement dominated by JES uncertainty/b-fragmentation

Alternative methods: dileptons

• Leptonic decays (eµ final state):

-Expect ~92% of ttbar events

$$\mathrm{m_{lb}^2} = rac{m_t^2 - m_W^2}{2} \left(1 - \cos heta_{lb}
ight)$$

- Reconstruct m_{lb} and fit event yields bin-by-bin for different m_t
 - -choose permutation that minimizes m_{lb}
 - ~75-80% correct assignments
 - determine m_t by comparing yields in m_{lb}
 distribution for data and predictions
 - -shape and/or rate of m_{lb} distr.
- Dominant uncertainties from normalization, background

⇒ m_{top}=172.3 ± 1.3 GeV ±0.8%

 $\max(m_{\rm lb}) \approx \sqrt{m_t^2 - m_{\rm IM}^2} \approx 153 \text{GeV}$

see J. Kieseler talk

CMS-TOP-14-014

All-hadronic: mass

- Similar event selection as for xsection
- signal is extracted from data with a template fit on the top mass distribution
 - -signal shape taken from the simulation
 - QCD multijet production is the only relevant background, data-driven estimate
 - kinematic fit on zero-btag sample (negligible signal contamination)
- Switch to 2D fit with JES scale factor
- Fit signal and correct permutation fractions
- Constrain fit to ttbar hypothesis ±0.5%
 - $m_{\rm t} = 172.08 \pm 0.36 \, ({\rm stat.+JSF}) \pm 0.83 \, ({\rm syst.}) \, {\rm GeV}$
 - JSF = 1.007 ± 0.003 (stat.) ± 0.011 (syst.).
- Main systematics: JES+PU, signal modeling

Michele Gallinaro - "Top quark physics: production and mass" - La Thuile - March 1-7, 2015

CMS-TOP-14-002

Top mass from cross section

PLB 728(2014)496

- Direct m_{top} measurements rely on details of kinematics, reconstruction, calibration
- Extract mass from cross section
 - determine top quark pole mass using the experimental ttbar production cross section
- Comparatively large systematics
- Extract mass for fixed α_{S}
- Results consistent with standard measurements and EWK fits
 - Constrain α_{S} at the scale of the Z boson mass and derive $m_{\text{top}}{}^{\text{pole}}$
 - Constrain ${m_{\text{top}}}^{\text{pole}}$ to the measured value and derive α_{S}

$$\alpha_S(m_Z) = 0.1151^{+0.0033}_{-0.0032}$$

$$m_{top} = 176.7^{+3.8}_{-3.4} GeV$$

\Rightarrow It works but the uncertainty is large

CMS mass combination

CMS-TOP-14-015

Mass: Run 2 and beyond

- Might be able to measure m_{top} with a precision of 200 MeV
- Differential study of m_{top}
- Differential cross sections with full NLO tools
- No truly dominant systematic uncertainty
- b-fragmentation studies
 Measure in-situ in ttbar events
- Interpretation will require theory understanding improvement

Summary

 A lot of progress in understanding top quark production

- From a few events up to detailed studies
 - -Improved understanding and precision
 - Uncertainties dominated by systematics

- •Top quark physics plays a special role in most of BSM models
- Looking forward to future studies/13TeV data

Differential cross sections

CMS-TOP-12-041, arXiv:1404.3171

 $\sigma_{t\bar{t}}$

 $d\sigma_{t\bar{t}}$

- Measurements performed in fiducial volume to minimize model dependency
- Improve ttbar modeling and reduce uncertainties
- Sensitive to BSM effects
- Correct for detector effects ("unfolding" to particle level) and acceptances
- Good agreement in dilepton and lepton+jet channels, at different energies
- Large uncertainties at high jet multiplicities dominated by JES and MC modeling

Alternative mass measurements

PLB 728(2014)496, CMS-TOP-14-014, EPJC 73(2013)2494, TOP-12-030

(qd) ط[#] 220

200

180

Mass from production cross section

Well defined theoretical mass, relatively large uncertainties

- From m_{lb} distribution
 - Potential for future applications using improved predictions
- Using kinematic endpoints
 - Completely independent of simulation
- Mass from b-hadron flight distance
 - -Minimum dependence on JES
 - Depends on top p_T modeling

see J. Kieseler talk

Michele Gallinaro - "Top quark physics: production and mass" - La Thuile - March 1-7, 2015

Top++ 2.0, ABM11

Top++ 2.0, CT10

Top++ 2.0, HERAPDF1.5 Top++ 2.0, MSTW2008

Top++ 2.0, NNPDF2.3

Top mass in dileptons

EPJC 72(2012)2202, TOP-14-010

- Under-constrained system (2 neutrinos)
- Event selection similar to cross section measurement (require MET)
- Build observable using analytical solutions for m_{top}
 - Up to 4 solutions per event per lepton-jet assignment
 - Assign weight using probability
- Measurement dominated by JES uncertainty/b-fragmentation

 $m_{\rm t} = 172.47 \pm 0.17({\rm stat}) \pm 1.40({\rm syst}) \,{\rm GeV}. \pm 0.8\%$

Mass: Systematic uncertainties

• Experimental

- m_t observable based on jet momenta
- Understanding of jet energy scale is crucial
- p_{T} and $\eta\text{-dependent}$ corrections
- Jet energy resolution
- B-fragmentation/hadronization
 - Compare hadronization models (Pythia vs Herwig) separately for each jet flavor
 - Additional cross-check of b-hadronization
 - Retune Z2* to describe b-fragmentation

Hadronization

- Observe softer top p_T spectrum in data than simulation (Madgraph+Pythia6)
- Quote difference as uncertainty
- Non-perturbative QCD
 - Colored final states, connect to UE

Lepton+jets final state

- Best channel to measure m_t
 - -well defined final state (1 lepton, 1v, 2b $W_{qq'}$)
- Select ttbar events, define observable
 - hadronic decays (m_t, m_W)
 - -No optimization \Rightarrow get incorrect parton-jet assignment
- Kinematic fit: constrain W mass, topantitop masses
 - Goodness of fit
 - Event-by-event weight
 - -42% correct, 21% wrong, 37% unmatched
 - Also use info from incorrect assignments

 172.04 ± 0.19 (stat.+JSF) ± 0.75 (syst.) GeV m_{t} 1.007 ± 0.002 (stat.) ± 0.012 (syst.). JSF

Michele Gallinaro - "Top quark physics: production and mass" - La Thuile - March 1-7, 2015

CMS-TOP-14-001

I+jet final state: mass syst.

$m_t = 172.38 \pm 0.10_{stat} \pm 0.65_{syst} \text{ GeV}$

Major combined uncertainties	Δm _t (GeV)
Uncorrelated JES component	0.14
Jet energy resolution	0.17
Pileup	0.20
Flavor dependent hadronization	0.36
b-fragmentation / B hadron decays	0.14
Renormal. / factorization scales	0.17
ME-PS matching threshold	0.16
ME generator	0.13
Top quark p⊤	0.12
Underlying Event	0.16
Color Reconnection	0.18
Total	0.65

dileptons: mass syst.

mt = 172.47 ± 0.17_{stat} ± 1.40_{syst} GeV

Major Systematics	Δm _t (GeV)
Jet energy scale	0.61
Pileup	0.15
Flavor dependent hadronization	0.28
b-fragmentation	0.67
B hadron decays	0.18
PDFs	0.18
Renormal. / factorization scales	0.87
ME generator	0.37
Color reconnection	0.16
Total	1.40

All-hadronic: mass syst.

Source	Relative uncertainty (%)
Jet energy scale	10.1
Background contribution	9.0
Tagging of b jets	6.0
Renormalisation and factorisation scale	5.8
Tune for underlying event	5.5
Trigger	5.0
Jet energy resolution	4.0
Matching matrix elements/parton showers	4.0
Mass of the top quark	2.1
Pileup	0.8
Total systematic	18.6
Total statistical	7.0
Luminosity	2.2
Total uncertainty	20.0

Top cross section: LHC combination

	ATLAS	CMS	Correlation	LHC combination
Cross section [pb]	242.4	239.0		241.5
Uncertainty [pb]				
Statistical	1.7	2.6	0	1.4
Detector model				
Trigger	0.4	3.6	0	1.0
Lepton scale and resolution	1.2	0.2	0	0.9
Lepton identification	1.7	4.0	0	1.6
Jet resolution	1.2	3.0	0	1.2
Jet identification	0.1	_	_	0.1
b-tagging	1.0	1.7	0	0.8
Pileup	_	2.0	_	0.5
Non-JES subtotal	2.6	6.7	0	2.6
UncorrJES	0.6	4.3	0	1.2
InsituJES	0.6	0.6	0	0.5
IntercalibJES	0.3	0.1	0.5	0.2
FlavourJES	0.9	2.9	1	1.4
bJES	0.1	_	_	0.1
JES subtotal	1.3	5.2	0.4	1.9
Class subtotal	2.9	8.5		3.2
Signal model				
Scale	0.7	5.6	0.5	1.9
Radiation	-	3.8	_	1.0
Generator and parton shower	3.0	3.3	0.5	2.7
PDF	2.7	0.5	1	2.1
Class subtotal	4.1	7.5	0.3	4.0
Background from data				
Z+jets	< 0.1	1.5	0	0.4
Lepton misidentification	0.8	1.9	0	0.8
Class subtotal	0.8	2.4	0	0.9
Background from simulation				
Dibosons	0.3	0.5	1	0.4
Single top quark	2.0	2.3	1	2.1
Class subtotal	2.0	2.4	1	2.1
Luminosity				
Beam modelling	2.9	5.0	1	3.5
Luminosity determination	6.9	3.6	0	5.1
Class subtotal	7.5	6.2	0.3	6.2
Total systematic	9.3	13.4		8.4
Total	9.4	13.6		8.5