

Top Quark Studies at the Tevatron

Sandra Leone (INFN Pisa)

On behalf of the CDF and D0 Collaborations

Rencontres de Physique de la Vallée d'Aoste La Thuile March 5, 2015

The Fermilab Tevatron

Run II: $\sqrt{s} = 1.96$ TeV, 10 fb⁻¹ on tape Tevatron stopped operating on September 2011 after a 26 years career

The birthplace of the top quark, observed in 1995 by CDF and DO Announcement of top quark discovery: March 2nd, 1995 Top is twenty!!

Collision!

PRL 74 2626, PRL 74 2632 (1995)

La Thuile, March 5, 2015

Sandra Leone INFN Pisa

- ▷ s-channel: σ_{SM} = 1.04 ± 0.06 pb
- +-channel: σ_{SM} = 2.1 ± 0.1 pb

(for m_{Top}= 173 GeV)

PRD 83, 091503 (2011),PRD 81, 054028 (2010) PRD 82, 054018 (2010) arxiv:1210.7813.

• Single top associated production Wt: $\sigma \sim 0.22$ pb, too small at the Tevatron

La Thuile, March 5, 2015

Sandra Leone INFN Pisa

Why is top a special particle?

- Heavier than all known particles:
 - \Rightarrow Short lifetime \rightarrow decays before hadronizing \rightarrow
 - ✓ Properties can be studied from distributions of decay products
 - ⇒ Provides a probe for electroweak symmetry breaking
 - \Rightarrow Related to Higgs mass through loops
- Since top discovery:
 - \Rightarrow 20 years of top properties studies
 - ⇒ Is the observed top quark the Standard Model top quark?
 - \Rightarrow Any contribution from new physics?
- Deviation of the measured top quark properties from the SM prediction would be a signal of new physics

What can we measure?

 This talk will focus on most recent measurements and those complementary / competitive with LHC

- \Rightarrow ttbar cross section
- ⇒ single top production ⇒ observation of single top s-channel
- $\Rightarrow A_{FB}$ asymmetry
- \Rightarrow top mass
- ⇒ branching fractions All measurements based on full RunII dataset

ttbar inclusive cross section

- Top pair XS measured in different decay channels
- Tevatron combination:
 - ⇒ measurements from each experiment are combined for a CDF, a D0 and a Tevatron combination
 - ⇒ combination taking into account statistical and systematic correlation
 - CDF combination:

σ = 7.63 ± 0.50 (stat+syst) pb

DO combination:

σ = 7.56 ± 0.59 (stat+syst) pb

Consistent results among different channels, methods, and experiments

For more details on recent DO results see J. Franc talk at YSF-3

Theory prediction uncert.≈ 4% PRL110, 252004 (2013)

ttbar differential cross section 🏼

- stringent tests of QCD in the top quark sector
- I + >= 4jets channel with 1 b-tag
 - \Rightarrow measurements vs m(tt), p_(t), |y(t)|, data corrected for detector efficiency, acceptance and bin migration

 \Rightarrow Overall good agreement with the predictions PRD 90, 092006 (2014)

- NLO QCD predicts small (~8%) asymmetry from qqbar → ttbar, while gg remains symmetric. Recent NNLO predicts ~9.5%(arXiv:1411.3007)
- New physics can modify this asymmetry (Z', axigluons,...)
- Experimentally, asymmetries based on fully reconstructed top quarks using the rapidity difference (Δy) of t \rightarrow lvb and antitop t \rightarrow jjb or based on decay leptons

- Lepton + jets channel
- CDF 9.4 fb⁻¹
- Measure Δy spectrum of $t\bar{t}$ in data
- Subtract background, correct for accept. and detector resolution effects
- Parton level result:

 \Rightarrow A = 16.4 ± 4.7 (stat+syst)%

PRD87 92002 (2013)

- D0 9.7 fb⁻¹
- new kinematic fitting algorithm for events with four or more jets
- new partial reconstruction algorithm for events with only three jets
- Simultaneously unfold several channels:
 A = 10.6 ± 3.0 (stat+syst)% PRD90 072011 (2014)

Lepton + jets channel

Check rapidity and mass kinematic dependence of asymmetry

- Kinematic dependencies in CDF data slightly larger than predicted by SM at both NLO and NNLO
- Overall NNLO predicted asymmetry; 9.5 ± 0.7 %

M. Czakon, P. Fiedler and A. Mitov arXiv:1411.3007

Ł

 New DO measurement in dilepton channel using the matrix element method:

 \Rightarrow assign a likelihood per event for most probable Δy value

- Systematic uncertainties dominated by signal modeling
- After background subtraction and calibration to true partonic asymmetry level:

A_{FB} || = 18.0 ± 6.9(stat.+syst) ± 5.1 (model)% DØ note 6445-CONF (2014)

- Old CDF result (5.1 fb⁻¹)
- A_{FB} " = 42.0 ± 16.0 (stat.+syst)%

CDF Note 10436, (2011)

Lepton Asymmetry in ℓ + jets

- A^{ℓ} parametrized as a function of qy_{ℓ} of the lepton from W decay, no need to reconstruct the ttbar system
 - \Rightarrow Insensitive to biases from top reconstruction procedure
- A^{ℓ} kinematically correlated with $A_{FB} \rightarrow A^{\ell} \sim (0.5) A_{FB}$ (model dependent: PRD 86 034026 (2012))

- tt-based and lepton-based results using full RunII dataset
- DO data:
 - ⇒rather good agreement with QCD predictions
- CDF data:
 - ⇒ inclusive asymmetry slightly higher than predictions (~1.5 s.d. effect)
 - ⇒ asymmetry slopes vs M_{tt}⁻ and |∆y| slightly higher (max ~2 s.d. effect)

A_{FB} in bb pairs Select kin. region where quark-antiquark initial state is enhanced CDF: A_{FR} in bb pairs at large bb mass using jet-triggered data and jet charge to identify b from b The asymmetry is consistent with both zero and with the SM predictions as a function of $m(b\overline{b})$. D0 uses $B^{\pm} \rightarrow J/\psi K^{\pm}$ to probe asymmetry of b-quarks For more details Use unbinned maximum likelihood fit see J. Hogan talk PRL 114, 051803 (2015) at YSF-2 CDF Conf. Note 11092 (2014) 25 CDF Run II Preliminary $\int \mathcal{L} = 9.5 \, \text{fb}^{-1}$ (%) 5 (a) DØ, L = 10.4 fb⁻¹ CDF **A**FB 20 1510 $A_{\rm FB}$ [%] $\mathbf{5}$ - Data -5- MC@NLO NLO SM -10

La Thuile, March 5, 2015

225

-15

 $-20 \\ 150$

 $0.1 < |\eta| \le 0.7$

 $0.7 < |\eta| \le 1.2$

A_{FB} = [- 0.24 ± 0.41 (stat)± 0.19 (syst)] %

PRL 111 062003)

Axigluon 200 GeV/ c^2

Axigluon 345 GeV/c² PRD87 014004 (2013)

325

 $b\bar{b}$ mass [GeV/ c^2]

Sandra Leone INFN Pisa

 $|\eta| > 1.2$

 $|\eta(\mathbf{B})|$

Why measure Single Top Production

- $\sigma_{\text{single top}} \propto |V_{\text{tb}}|^2$
- Give access to the W-t-b vertex
 - \Rightarrow probe V-A structure
 - \Rightarrow access to top quark spin
- Allows direct measurement of Cabibbo-Kobayashi-Maskawa (CKM) matrix element |V_{tb}|:
- Each channel of the single-top ^{6'}
 production is sensitive to different classes of SM extensions:

⇒ Independently studying the production of these channels provides more restrictive constraints on SM extensions than just studying the combined production rate.

 \checkmark e.g. s-channel $\rightarrow\,$ heavy W' boson, charged Higgs H^+

PRD63, 014018 (2001)

Tevatron s-channel combination

- Single top s-channel observed by combining evidence in DO and CDF data
- Build multivariate discriminants, optimized to separate s-channel signal from backgrounds
- Combine individual discriminants including all correlations:

 $\sigma_s = 1.29^{+0.26}_{-0.24}$ (stat+syst) pb (±19%) 6.3 σ (5.1 σ expected)

First observation of s-channel single top production

PRL 112 231803 (2014)

- \blacksquare Combine CDF and DO analysis, discriminants trained on s-channel or t-channel \rightarrow both discriminants used simultaneously
- Construction of 2D posterior probability density function of $\sigma_{\!s}$ and $\sigma_{\!t}$
- Combined $\sigma_{\text{s+t}}$: measured by forming 2D posterior for $\sigma_{\text{s+t}}$ versus σ_{t}
- \rightarrow integrate out σ_{t} with no assumption on SM $\sigma_{\!s}$ / $\!\sigma_{\!t}$

Sandra Leone INFN Pisa

Summary of single top measurements

La Thuile, March 5, 2015

Sandra Leone INFN Pisa

Lepton plus jets top-quark mass

- Use Matrix element technique
- Overall jet energy scale constrained in situ by the mass of the W boson
- Most precise single measurement of the top-quark mass.

La Thuile, March 5, 2015

Ł

Dilepton top-quark mass

Measurement with the full Tevatron dataset

 \rightarrow statistics is no longer the limiting uncertainty, this analysis optimized the influence of jet energy scale

- Template analysis using an hybrid variable
- $\rightarrow M_t^{reco}$: reconstructed top mass (neutrino Φ weighting)
- $\rightarrow M_{lb}^{alt}$: based only on lepton 4-momenta and jet directions
- \rightarrow optimization of the uncertainty obtained with w = 0.6

$$M^{\text{hyb}} = w \cdot M_t^{\text{reco}} + (1 - w) \cdot M_{lb}^{\text{alt}}$$

M_{top} = 171.5 ± 1.9 (stat) ± 2.5(syst) GeV/c²

14% reduced uncertainty compared to the previous CDF result in this channel

La Thuile, March 5, 2015

Sandra Leone INFN Pisa

Conclusion

- 3.5 years after the end of RunII Tevatron continues providing valuable top physics results
- Many top quark areas of study (i.e. cross sections, single top s-channel, A_{FB}) are complementary to LHC.
 - CDF & DO are in the process of making Tevatron legacy measurements, the current combined Tevatron top quark mass has an uncertainty < 0.4%
- The final Tevatron single top cross section measurements are now available:
 - \Rightarrow Single top quark s-channel production observed in 2014
 - \Rightarrow Tevatron combined s+t almost ready to be published
 - All measurements shown here in agreement with SM
 - \Rightarrow Historical disagreement of A_{FB} from CDF data with new NNLO SM prediction < 2 s.d.

Conclusion

- 3.5 years after the end of RunII Tevatron continues providing valuable top physics results
- Many top quark areas of study (i.e. cross sections, single top s-channel, A_{FB}) are complementary to LHC.
- CDF & DO are in the process of making Tevatron legacy measurements, the current is a lived Tevatron top quark mass has an ur
- The final Teve Thank you!
 are now available:

.easurements

- For more details:
- http://www-cdf.fnal.gov/physics/new/top/top.html
- http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/
 - http://tevewwg.fnal.gov

Backup

Ratio of branching fractions R

- SM: R~1 constrained by CKM unitarity, R<1 would indicate new physics</p>
- Expect 2 b's in each top-antitop event.
- Comparing tt cross section measurements vs number of b-tag jets
- Latest CDF measurement in the dilepton channel

• D0 combined measurement in the l+jets and dilepton channel R = 0.90 \pm 0.04 (stat+syst) $|V_{tb}|$ = 0.95 \pm 0.02 PRL 107, 121802 (2011)

 CDF l+jets measurement: R = 0.94 ± 0.09 (stat+syst) |V_{tb}| = 0.97 ± 0.05 PRD 87, 111101 (2013)

TABLE IV. CDF and D0 measurements of $\sigma_{t\bar{t}}$ and their combination (in pb), with individual contributions to their uncertainties (in pb). Correlation indicates whether a given uncertainty is treated as fully correlated between the CDF and D0 measurements.

	CDF	D0		Tevatron
Central value of $\sigma_{\tilde{t}t}$	7.63	7.56		7.60
Sources of systematic uncertainty			Correlation	
Modeling of the detector	0.17	0.22	No	0.13
Modeling of signal	0.21	0.13	Yes	0.18
Modeling of jets	0.21	0.11	No	0.13
Method of extracting $\sigma_{t\bar{t}}$	0.01	0.07	No	0.03
Background modeled from theory	0.10	0.08	Yes	0.10
Background based on data	0.08	0.06	No	0.05
Normalization of Z/γ^* prediction	0.13		No	0.08
Luminosity: inelastic $p\bar{p}$ cross section	0.05	0.30	Yes	0.15
Luminosity: detector	0.06	0.35	No	0.14
Total systematic uncertainty	0.39	0.56		0.36
Statistical uncertainty	0.31	0.20		0.20
Total uncertainty	0.50	0.59		0.41

The CDF measurement has a weight of 60%, while the DO measurement has a weight of 40%. The correlation between the measurements of the two experiments is 17%.

Angular differential cross section

- cos θ of top quark wrt the beam axis in ttbar rest frame
- Asymmetry summarizes the angular distribution in one number: what component of angular shape explains A_{FB} ? CDF Run II Preliminary ∫L =9.4/fb $t\bar{t} \rightarrow \ell \nu + jets$ 500

400

- Characterize using expansion in Legendre $\frac{d\sigma(t\overline{t}\,)}{d\cos\theta} = \sum a_l P_l(\cos\theta)$ polynomials:
- Measure moments $a_1 a_8$

Lepton + jets system

• Check mass, rapidity (and p_T) kinematic dependence of asymmetry

Kinematic dependencies larger than MC@NLO predicted by SM

 \bullet Comparison of the observed number of leptons as a function of $q\eta_{\ell}$ with the SM expectations.

Single top production: Tevatron vs LHC

- Tevatron and LHC are both sensitive to t channel
- Wt-channel: negligible at the Tevatron
- s-channel: challenging at the LHC

First evidence for s-channel

- The s-channel measurement from D0 was the first evidence for single top s-channel production
- Excess of 3.7 standard deviations!
- σ_s = 1.1 ^{+0.33} _{-0.31} (stat+syst) pb

PLB726 (2013)656---664

- CDF performed new lepton+jets and MET+jets s-channel optimized analyses based on Higgs search tools and selection
- CDF combined s-channel:
- σ_s = 1.36^{+0.37}_{-0.32} (stat+syst) pb

PRL 112 231805 (2014)

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Tevatron s-channel combination

Build multivariate discriminants, optimized to separate s-channel signal from backgrounds

Combine individual discriminants including all correlations:

Systematic uncertainty	CDF		D0		Corre-
	Norm	Dist	Norm	Dist	lated
Lumi from detector	4.5%		4.5%		No
Lumi from cross section	4.0%		4.0%		Yes
Signal modeling	2 - 10%	•	3-8%		Yes
Background (simulation)	2 - 12%	•	2 - 11%	•	Yes
Background (data)	15 - 40%	•	19 - 50%	•	No
Detector modeling	2 - 10%	•	1–5%	•	No
<i>b</i> -jet-tagging	10 - 30%		5 - 40%	•	No
JES	$0\!-\!20\%$	•	0 - 40%	•	No

PRL 112 231803 (2014)

Y

Tevatron top mass combination

Total uncertainty < 0.4% (better than world comb. March 2014: 0.76 GeV)</p>

	Tevatron combined values (GeV/c^2)	?)
$M_{ m t}$	174.34	
In situ light-jet calibration (iJES)	0.31	
Response to $b/q/g$ jets (aJES)	0.10	
Model for b jets (bJES)	0.10	
Out-of-cone correction (cJES)	0.02	
Light-jet response (1) (rJES)	0.05	
Light-jet response (2) (dJES)	0.13	
Lepton modeling (LepPt)	0.07	
Signal modeling (Signal)	0.34	
Jet modeling (DetMod)	0.03	
b-tag modeling (b-tag)	0.07	
Background from theory (BGMC)	0.04	
Background based on data (BGData)	0.08	
Calibration method (Method)	0.07	
Offset (UN/MI)	0.00	
Multiple interactions model (MHI)	0.06	
Systematic uncertainty (syst)	0.52	
Statistical uncertainty (stat)	0.37	
Total uncertainty	0.64 a	rXiv:1407.268

La Thuile, March 5, 2015

\$

Top Quark Mass: World Combination

 Uncertainty of 0.76 GeV → including newest results from Tevatron and LHC should be reduced even further!
 Compatibility between input results will need careful arXiv:1403.4427

Lepton plus jets top quark mass

- Use Matrix element technique
 - Calculate the event probability on an event-by-event basis

$$egin{aligned} P_{ ext{evt}}(m_{ ext{top}}) &\propto f P_{ ext{sig}}(m_{ ext{top}}) + (1-f) P_{ ext{bgr}} \ P_{ ext{sig}}(m_{ ext{top}}) &\propto \int ... ext{d} \sigma_{tar{t}}(m_{ ext{top}}) \ & ext{d} \sigma_{tar{t}} \propto |\mathcal{M}_{tar{t}}|^2(m_{ ext{top}}) \end{aligned}$$

- \bullet Advantages: Use 4-vectors with maximal kinematic and topological information a \rightarrow maximal statistical sensitivity
- Constrain energies of the two jets from W to be consistent with $M_{\rm W}$
- \bullet Maximise the likelihood in M_{t} and in the overall scale factor for jet energies k_{JES}
- Improvements:
 - reduction of ME calculation time
 - increase of ME calibration samples
 - increase of data sample and MC samples
 - new JES calibration including flavour-dependent response correction
 - ttbar modeling (ISR/FSR, hadronisation)

PRL113 032002 (2014)

Lepton plus jets top quark mass

Systematic uncertainties:

Source of uncertainty	Effect on m_t (GeV)	Source	Uncertainty (GeV)
Signal and background modeling:		Modeling of production:	
Higher order corrections [*]	0.15	Modeling of signal:	
Initial/final state radiation*	0.09	Higher-order effects	± 0.25
Hadronization & UE [*]	0.26	ISR/FSR	± 0.26
Color reconnection [*]	0.10	Hadronization and UE	± 0.58
Multiple $p\bar{p}$ interactions	0.06	Color reconnection	± 0.28
Heavy flavor scale factor	0.06	Multiple $p\bar{p}$ interactions	± 0.07
b-jet modeling	0.09	Modeling of background	± 0.16
PDF uncertainty	0.11	W+jets heavy-flavor scale factor	±0.07
Detector modeling:		Modeling of b jets	± 0.09
Residual jet energy scale	0.21	Choice of PDF	± 0.24
Data-MC jet response difference	0.16	Modeling of detector:	
b-tagging	0.10	Residual jet energy scale	± 0.21
Trigger	0.01	Data-MC jet response difference	± 0.28
Lepton momentum scale	0.01 1.02	GeV b-tagging efficiency	± 0.08
Jet energy resolution	0.07	Trigger efficiency	± 0.01
Jet ID efficiency	0.01	Lepton momentum scale	± 0.17
Method:		Jet energy resolution	± 0.32
Modeling of multijet events	0.04 0.49	GeV Jet ID efficiency	± 0.26
Signal fraction	0.08	method:	
MC calibration	0.07	Multijet contamination	± 0.14
Total systematic uncertainty	0.49	Signal fraction	± 0.10
Total statistical uncertainty	0.58	MC calibration	±0.20
Total uncertainty	0.76	Total	±1.02
PRL113 032002 (20	14) 9.7 fb ⁻¹	PRD84 032004 (201	11) 3.6 fb ⁻¹

La Thuile, March 5, 2015

Sandra Leone INFN Pisa

Dilepton top-quark mass

Summary of uncertainties

Source	Uncertainty (GeV/c^2)	
Jet-energy scale	2.2	
NLO effects	0.7	
Monte Carlo generators	0.5	
Lepton-energy scale	0.4	
Background modeling	0.4	
Initial- and final-state radiation	0.4	
gg fraction	0.3	
<i>b</i> -jet-energy scale	0.3	
Luminosity profile	0.3	
Color reconnection	0.2	
MC sample size	0.2	
Parton distribution functions	0.2	
b-tagging	0.1	
Total systematic uncertainty	2.5	
Statistical uncertainty	1.9	
Total	3.2	CDF Con
		- 001 0011

CDF Conf. Note 11072 (2014) Sandra Leone INFN Pisa

La Thuile, March 5, 2015

Dilepton top-quark mass

La Thuile, March 5, 2015