

Z production at LHCb

Rosen Matev (CERN & University of Sofia) on behalf of the LHCb Collaboration

Rencontres de Physique de la Vallée d'Aoste

Outline

- $Z \rightarrow ee at 8 TeV$
- Direct luminosity calibration
 - beam-gas imaging method
 - van der Meer scan method

 $\sigma = \frac{N}{\int L dt}$

┝∖

$Z \rightarrow ee at 8 TeV$	arXiv:1503.00963
Z + b-jet at 7 TeV	<u>JHEP 01 (2015) 064</u>
Z + jet at 7 TeV	<u>JHEP 01 (2014) 033</u>
Z \rightarrow ee at 7 TeV	<u>JHEP 02 (2013) 106</u>
$Z \rightarrow \tau \tau$ at 7 TeV	<u>JHEP 01 (2013) 111</u>
Z \rightarrow μμ at 7 TeV	LHCb-CONF-2013-007
Luminosity	JINST 9 (2014) P1200

LHCb detector

La Thuile, March 5, 2015

Rosen Matev

LHCb explored kinematics

x

$Z \rightarrow ee cross-section$

- $\int L = 2 \text{ fb}^{-1} (2012)$
- trigger on high- p_T single-electron signal
- selection: electron and positron with $p_T > 20$ GeV/c and 2.0 < η < 4.5
- particle identification by high-energy electron signature in the calorimeters
- $M(ee) > 40 \text{ GeV/c}^2$
- peak degraded by bremsstrahlung that is not fully recovered in the calorimeters
- compared to Z → μμ: independent sample and different sources of systematic uncertainties

		Fractional uncertainty	
	Average value	Uncorrelated	Correlated
ϵ	0.319	0.002	0.016
$f_{ m MZ}$	0.969	0.001	
Background estimation			0.004
$\int \mathcal{L} dt / pb^{-1}$	1976		0.012

data (65.6k) simulated signal background from same-sign data (4.6k)

$Z \rightarrow ee \ cross-section$

- R and σ correspond to a stable effective process
 - e.g. events with >= 1 track
- Bunch intensities (N₁N₂) measured by LHC instruments
- Overlap integral depends on beam properties
 - measure "directly" with beam-gas imaging (BGI): exclusive to LHCb!
 - measure "indirectly" with van der Meer (VDM) scans: all 4 experiments

Beam-gas imaging (BGI)

$$Overlap = \int \rho_1(x, y, z, t) \rho_2(x, y, z, t) \, dx \, dy \, dz \, dt$$

Single bunch density function of colliding bunch pair (e.g. double Gaussian profile)

method proposed:

NIM A553 (2005) 388

Overlap integral depends on:

•Single bunch profiles (X,Y width, shape)

0 z (mm)

•Beam crossing angle

JINST 9 (2014) P12005

-500

-1000

•Offset (head-on or displaced)

All parameters are measured using interactions between beam and residual gas

VELO event display

Rosen Matev

0.5

0.0

-0.5

-1.0

y (mm)

1000

500

Vertex resolution

- Beam-gas vertices are measured with VELO
 - high precision silicon strip detector surrounding the beam spot
 - excellent resolution in the transverse vertex position
- Important to know the resolution
- Resolution depends on
 - Z position, number of tracks

Example resolution parameterization for p-p interactions

Deconvolution example with true beam width of 93 μ m

La Thuile, March 5, 2015

Rosen Matev

Global fit

- 10⁵ beam-gas and 10⁶ beam-beam
 vertices per bunch pair per 20 min
- Fit single beams and luminous region in one global fit
 - parameters: beam widths (multiple components), position, angle
 - strong constraint from beam spot
- Reached 1.4% uncertainty at Vs = 8 TeV!

Rosen Matev

$$\mu = \frac{R}{f_{rev}} = \frac{\sigma L}{f_{rev}} = \sigma N_1 N_2 \int \rho_1(x, y) \rho_2(x, y) dx dy$$

 μ – average number of interactions per bunch crossing

• Simon van der Meer's idea: separate beams and integrate rate as function of separation

 $\mu(\Delta x, \Delta y) = \sigma N_1 N_2 \int \rho_1(x, y) \rho_2(x + \Delta x, y + \Delta y) dx dy$

 $\int \mu(\Delta x, \Delta y) d\Delta x \, d\Delta y = \sigma N_1 N_2 \underbrace{\int \rho_1(x, y) \rho_2(x + \Delta x, y + \Delta y) \, dx \, dy \, d\Delta x \, d\Delta y}_{\text{OP}}$

- Raster scan not practical, would be too slow
- Do single direction scans in Δx and Δy
 - sufficient if $\rho_i(x, y)$ are x-y factorizable
 - method is simple and robust (only rates are measured)

*In reality: finer steps and move both beams

=1

Van der Meer scans

- Sequence of several X-Y scan pairs
- Main sources of systematic uncertainty
 - knowledge of beam separation
 - assumptions for the 2-d profile shape
- Reached 1.5% uncertainty at √s = 8 TeV!

Beam movements recorded by beam position monitors

• Z \rightarrow ee cross-section measured with high precision

- systematic uncertainty of 1.6% (without luminosity)
- luminosity is no longer limiting
- valuable input to models for soft gluon emission and PDF fits
- Unprecedented precision on the luminosity determination
 - combined precision of 1.2% at $\sqrt{s} = 8$ TeV, using the two methods
 - most precise so far at a bunched beam hadron collider
- More electroweak results at 7 and 8 TeV coming soon

Thank you!