Heavy Quark Spectroscopy at LHCb

Giulia Manca (on behalf of the LHCb Collaboration) Universita` degli Studi di Cagliari & I.N.F.N.

Les Rencontres de Physique de la Vallée d'Aoste, 1-7th March 2015

Outline

Detector and accelerator: LHCb at the LHC

Heavy baryon spectroscopy VERY RECENT results :

➢ Observation of two new Ξ⁻_b baryon resonances
 ➢ [LHCB-PAPER-2014-061; arXiv:1411.4849;PRL 114 (2015) 062004]

Precise measurements of the properties of the B₁(5721)^{0,+} and B₂*(5747)^{0,+} states and observation of B^{+,0} π^{-,+} mass structures
 [LHCB-PAPER-2014-067; arXiv:1502.02638, submitted to JHEP]

 First Observation of the B⁻→D⁺K⁻π⁻ decay and study of its Dalitz plot structure
 >[LHCB-PAPER-2015-007; To be submitted to PRD]

Conclusions and outlook

Outline

- Detector and accelerator: LHCb at the LHC
- Heavy baryon spectroscopy results :
 - Observation of two new Ξ⁻_b baryon resonances
 [LHCB-PAPER-2014-061; arXiv:1411.4849; PRL 114 (2015) 062004]
 - > Precise measurements of the properties of the $B_1(5721)^{0,+}$ and $B_2^*(5747)^{0,+}$ states and observation of $B^{+,0} \pi^{-,+}$ mass structures
 - [LHCB-PAPER-2014-067; arXiv:1502.02638, submitted to JHEP]
 - First Observation of the B-->D+K-π- decay and study of its Dalitz plot structure >[LHCB-PAPER-2015-007; To be submitted to PRD]
- Conclusions and outlook

Introduction

PRL 114 (2015) 062004

Baryons in 2D

Introduction & Motivation

Baryons in 3D

The systems of baryons including a b are still largely unexplored

PRL 114 (2015) 062004

State of the art

<i>bqq</i> (q=u,d,s) Baryons (B=1, C=0)										
Notation	Quark	J^P	SU(3)	(I, I_3)	S	В	:			
	$\operatorname{content}$						_			
Λ_b	b[ud]	$1/2^{+}$	3*	(0, 0)	0	1				
Ξ_b^0	b[su]	$1/2^{+}$	3*	(1/2, 1/2)	-1	1				
Ξ_b^-	b[sd]	$1/2^{+}$	3*	(1/2, -1/2)	-1	1				
Σ_b^+	buu	$1/2^{+}$	6	(1, 1)	0	1				
Σ_b^0	$b{ud}$	$1/2^{+}$	6	(1, 0)	0	1				
Σ_b^-	bdd	$1/2^{+}$	6	(1, -1)	0	1				
$\Xi_b^{0'}$	$b\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1	Missing			
$\Xi_b^{-\prime}$	$b\{sd\}$	$1/2^{+}$	6	(1/2, -1/2)	-1	1	states			
Ω_b^-	bss	$1/2^{+}$	6	(0, 0)	-2	1	sidies			
Σ_b^{*+}	buu	$3/2^{+}$	6	(1, 1)	0	1				
Σ_b^{*0}	bud	$3/2^{+}$	6	(1, 0)	0	1				
Σ_b^{*-}	bdd	$3/2^{+}$	6	(1, -1)	0	1				
Ξ_b^{*0}	bus	$3/2^{+}$	6	(1/2, 1/2)	-1	1				
Ξ_b^{*-}	bds	$3/2^{+}$	6	(1/2, -1/2)	-1	1	6/			
Ω_b^{*-}	bss	$3/2^{+}$	6	(0, 0)	-2	1	6			

State of the art

State of the Art

	bqq (q=u,d,s) Bar	yons ((B=1, C=0))	
	Notation	Quark	J^P	SU(3)	(I, I_3)	S	B
		$\operatorname{content}$					
	Λ_b	b[ud]	$1/2^{+}$	3*	(0, 0)	0) 1
	Ξ_b^0	b[su]	$1/2^{+}$	3*	(1/2, 1/2)	-1	. 1
	Ξ_b^-	b[sd]	$1/2^{+}$	3*	(1/2, -1/2)	-1	. 1
	Σ_b^+	buu	$1/2^{+}$	6	(1, 1)	0) 1
	Σ_b^0	$b{ud}$	$1/2^{+}$	6	(1, 0)	0) 1
	Σ_b^-	bdd	$1/2^{+}$	6	(1, -1)	0	0 1
	$\Xi_b^{0'}$	$b\{su\}$	$1/2^{+}$	6	(1/2, 1/2)	-1	1 Missing
	$\Xi_b^{-\prime}$	$b\{sd\}$	$1/2^{+}$	6	(1/2, -1/2)	-1	
	Ω_b^-	bss	$1/2^{+}$	6	(0, 0)	-2	a 1 sidies
Theory : $\int_{-\infty}^{\infty} f(T^{p} 1/2) \approx m(T^{p} 1/2)$	Σ_b^{*+}	buu	$3/2^{+}$	6	(1, 1)	0	
$\checkmark = \frac{1}{b} (J' = 1/2) m(=_b) + m(\pi)$ $\checkmark = \frac{1}{c} (TP = 3/2) \times m(=_b) + m(\pi)$	Σ_b^{*0}	bud	$3/2^{+}$	6	(1, 0)	0	
${b} (3 - 3/2) / m({b}) + m(n)$	Σ_b^{*-}	bdd	$3/2^{+}$	6	(1, -1)	0) 1
	Ξ_b^{*0}	bus	$3/2^{+}$	6	(1/2, 1/2)	-1	. 1
	Ξ_b^{*-}	bds	$3/2^{+}$	6	(1/2, -1/2)	-1	. 1
	Ω_b^{*-}	bss	$3/2^{+}$	6	(0, 0)	-2	

How to look for them? [LHCB-PAPER-2014-061; arXiv:1411.4849]

How to look for them? [LHCB-PAPER-2014-061; arXiv:1411.4849]

NB: This does not work for the $\Xi_c' \rightarrow$ too light !

 π^+

π

Mass Splittings [LHCB-PAPER-2014-061; arXiv:1411.4849]

Assuming isospin splitting~ 6 MeV measured in the Ξ_b sector is the same for all Ξ_b*

Search for $\Xi_{b}^{*-} \rightarrow \Xi_{b}^{0} \pi^{-}$ [LHCB-PAPER-2014-061; arXiv:1411.4849]

➡ Integrated luminosity 3.0 fb⁻¹

→ Sample of $\Xi_{b}^{0} \rightarrow \Xi_{c}^{+}\pi^{-}$, where $\Xi_{c}^{+} \rightarrow pK^{-}\pi^{+}$ combined with a π^{-}

Probability peak at ~3 MeV is a feed-down of $\Xi_{b}^{**} \rightarrow \Xi_{b}^{\circ}$ ($\Xi_{b}^{\circ} \pi^{\circ}$) π very low

G.Manca, LaThuile 2015

Results

PRL 114 (2015) 062004

[LHCB-PAPER-2014-061; arXiv:1411.4849]

➡ The first peak is very narrow -> upper limit on its width \[\[\[\], then fix it to zero for the baseline fit

 $\Gamma(\Xi_{\rm b}^{\prime-}) < 0.08 \text{ MeV} \text{ at } 95\% \text{ CL}$

With this assumption :

$\delta m(\Xi_{\rm b}^{\prime -})$	=	$3.653 \pm 0.018 \pm 0.006 \text{ MeV}$
$\delta m(\Xi_{\rm b}^{*-})$	=	$23.96 \pm 0.12 \pm 0.06 \mathrm{MeV}$
$\Gamma(\Xi_{\rm b}^{*-})$	=	$1.65 \pm 0.31 \pm 0.10 \; { m MeV}$

$m(\Xi_{\rm b}^{\prime-})$	—	$5935.02 \pm 0.02 \pm 0.01 \pm 0.50 \text{ MeV}$
$m(\Xi_{\rm b}^{*-})$	=	$5955.33 \pm 0.12 \pm 0.06 \pm 0.50 \text{ MeV}$

Further measurements of spin and relative production fractions (in the back-up) give further indication on the identity of these states

PRL 114 (2015) 062004

Outline

Detector and accelerator: LHCb at the LHC

Heavy baryon spectroscopy results :

- Observation of two new E⁻_b baryon resonances
 [LHCB-PAPER-2014-061;arXiv:1411.4849;PRL.114(2015) 062004]
- Precise measurements of the properties of the B₁(5721)^{0,+} and B₂*(5747)^{0,+} states and observation of B^{+,0} π^{-,+} mass structures
 [LHCB-PAPER-2014-067; arXiv:1502.02638, submitted to JHEP]

First Observation of the B-->D+K-π- decay and study of its Dalitz plot structure >[LHCB-PAPER-2015-007; To be submitted to PRD]

Conclusions and outlook

B** Spectroscopy

- Heavy Quark Effective Theory 56.6 (HQET) predicts spectrum of excited B states 6.4
 - Spectrum almost identical for charged and neutral B** states
 - Higher excitations in $B/B* + \pi$
- States largely unknown
- Predicted: broad B_0^*/B_1^+ states,
- Observed: narrow B₁/B^{*}₂ states interpreted as overlap of B₁⁰ and B₂^{*0}→B^{*+}π⁻

[CDF, Phys.Rev.Lett. 102 (2009) 102003] [D0, Phys.Rev.Lett. 99 (2007) 172001]

- LHCb reported the first observation of charged B₁⁺, B₂^{*+} [LHCb-CONF-2011-053]
- Evidence for higher mass states
 B(5970)^{0,+} from CDF
 [Phys.Rev. D90 (2014) 1, 012013]

[LHCB-PAPER-2014-067; arXiv:1502.02638]

Motivation & Notation [LHCB-PAPER-2014-067; arXiv:1502.02638]

Precise measurements of the excited heavy meson properties are a sensitive test of the validity of HQET

$$\vec{s}_{Q} \quad \vec{s}_{q} \quad \vec{l}_{\vec{j}_{q}} = \vec{L} + \vec{s}_{q=u,d,\vec{s}}$$
 Orbital angular momentum of the light quark $\vec{J} = \vec{j}_{q} + \vec{s}_{Q=b,c}$ Total angular momentum of the heavy meson

Spectroscopy notation

Radial quantum number

 $L = 0,1,2... \rightarrow S, P, D$

Search for B^{**} in $B^{+/0}\pi^{-/+}_{[LHCB-PAPER-2014-067; arXiv:1502.02638]}$

- ightarrow Search for new structures in B π final states;
 - B⁺(B⁰) candidates within ±25(50) MeV/c², decay time > 0.3 ps, combined with π⁻(π⁺) (p_T>0.5 GeV/c, PID, small IP)
- ightarrow Simultaneous fit to 3 bins for p_T of "companion" pion in $B^+\pi^-$, $B^0\pi^+$
- "Empirical" Fit Model:

Fit results [LHCB-PAPER-2014-067; arXiv:1502.02638] \rightarrow In bins of p_{T} of the companion pion $0.5 < p_T < 1 \text{ GeV}$ $1 < p_T < 2 \text{ GeV}$ $p_T > 2 \text{ GeV}$ 14000 B (5721)⁰→ B⁺ 80 Solution 12000 $B_{1}^{i}(5747)^{0} \rightarrow B^{i}(B^{+}\gamma)\pi$ $B_2^{(5747)} \rightarrow B^{\pi}$ $B_2^{(5747)} \rightarrow B^{*}(B^{+}\gamma)\pi^{-1}$ LHCb LHCb LHCb B²(5747)⁰→ B⁺π⁻ B²(5747)⁰→ B⁺π⁻ 700 B.(5960)⁰→ B⁺π⁻ B₁(5960)⁰→ B⁺π⁻

Fit Results Integrated Over p_T

[LHCB-PAPER-2014-067; arXiv:1502.02638]

Significances: B⁺ π ⁻: 9.6 σ for at least one resonance, 7.5 σ for two B⁰ π ⁺: 4.8 σ for at least one resonance, 4.6 σ for two

B₁(5721)^{0,+} and B₂*(5747)^{0,+} Results

- Mass and width measurements presented for narrow states
 - Measurements agree with (but are more precise than) CDF results

					5101.		<u> </u>		D mass	D	-D III	uss
m_{B_1}	$(5721)^0$	=	5727.7	±	0.7	±	1.4	±	0.17	±	0.4	MeV,
$m_{B_{2}^{*}($	$(5747)^0$	=	5739.44	\pm	0.37	\pm	0.33	±	0.17			${ m MeV},$
$m_{B_1}($	5721)+	—	5725.1	\pm	1.8	\pm	3.1	±	0.17	\pm	0.4	${ m MeV},$
$m_{B_{2}^{*}(\cdot)}$	5747)+	—	5737.20	\pm	0.72	\pm	0.40	±	0.17			${ m MeV},$
Γ_{B_1}	$(5721)^0$	—	30.1	\pm	1.5	\pm	3.5					${ m MeV},$
$\Gamma_{B_2^*}$	$(5747)^0$	—	24.5	\pm	1.0	\pm	1.5					${ m MeV},$
Γ_{B_1}	$(5721)^{+}$	—	29.1	\pm	3.6	\pm	4.3					${ m MeV},$
$\Gamma_{B_2^*}$	5747)+	=	23.6	\pm	2.0	\pm	2.1					MeV.

Most precise measurements of the $B_1(5721)$ and $B_2^*(5747)$ masses and widths

Measured also relative productions :

$$\begin{array}{rcl} & \underbrace{\text{stat.} & \text{syst.}} \\ \hline \mathcal{B}\left(B_2^*(5747)^0 \to B^{*+}\pi^{-}\right) \\ \hline \mathcal{B}\left(B_2^*(5747)^0 \to B^{+}\pi^{-}\right) \\ \hline \mathcal{B}\left(B_2^*(5747)^+ \to B^{*0}\pi^{+}\right) \\ \hline \mathcal{B}\left(B_2^*(5747)^+ \to B^0\pi^{+}\right) \\ \hline \mathcal{B}\left(B_2^*(5747)^+ \to B^0\pi^{+}\right) \\ \hline \end{array} = \begin{array}{rcl} 1.0 & \pm & 0.5 & \pm & 0.8 \\ \pm & 0.5 & \pm & 0.8 \end{array}, \end{array}$$
 First evidence of the $B_2^*(5747)^0 \to B^{*+}\pi^- (3.7 \,\sigma)!$

 \rightarrow Q values converted into absolute masses by adding the known B, π and B-B* masses

$B_{J}(5840)^{0,+}$ and $B_{J}(5960)^{0,+}$ Results

The properties of the $B_J(5960)^{0,+}$ states are consistent with and more precise than those obtained by the CDF collaboration when assuming decay only to $B\pi$

If the $B_J(5840)^{0,+}$ and $B_J(5960)^{0,+}$ states are considered under the quark model hypothesis, their properties are consistent with those expected for the B(2S) and B*(2S) radially excited states

Structure at high mass clearly observed; measured parameters and interpretation depend on model assumptions

				stat.		syst.		B mass	B*-B mass		
-				En	npiri	cal mo	del				
	$m_{B_J(5840)^0}$	5862.9	±	5.0	±	6.7	±	0.2			
	$\Gamma_{B_{J}(5840)^{0}}$	127.4	\pm	16.7	\pm	34.2					
	$m_{B_J(5960)^0}$	5969.2	\pm	2.9	\pm	5.1	\pm	0.2			
	$\Gamma_{B_{J}(5960)^{0}}$	82.3	\pm	7.7	\pm	9.4					
-	$m_{B_{J}(5840)^{+}}$	5850.3	±	12.7	±	13.7	±	0.2			
	$\Gamma_{B_{J}(5840)^{+}}$	224.4	\pm	23.9	\pm	79.8					
	$m_{B_J(5960)^+}$	5964.9	\pm	4.1	\pm	2.5	\pm	0.2			
	$\Gamma_{B_J(5960)^+}$	63.0	\pm	14.5	\pm	17.2					
-			Quar	k mod	el, B	$J_{J}(5840)$	$)^{0,+}$	natura	al		
-	$m_{B_J(5840)^0}$	5889.7	±	22.2	±	6.7	±	0.2			
	$\Gamma_{B_{J}(5840)^{0}}$	107.0	\pm	19.6	\pm	34.2					
	$m_{B_J(5960)^0}$	6015.9	\pm	3.7	\pm	5.1	\pm	0.2	\pm	0.4	
	$\Gamma_{B_{J}(5960)^{0}}$	81.6	\pm	9.9	\pm	9.4					
	$m_{B_J(5840)}$ +	5874.5	±	25.7	±	13.7	±	0.2			
	$\Gamma_{B_{J}(5840)^{+}}$	214.6	\pm	26.7	\pm	79.8					
	$m_{B_J(5960)^+}$	6010.6	\pm	4.0	\pm	2.5	±	0.2	±	0.4	
	$\Gamma_{B_{J}(5960)^{+}}$	61.4	±	14.5	±	17.2					
			Quar	k mod	el, B	$C_J(5960)$	$)^{0,+}$	natura	al		
	$m_{B_J(5840)^0}$	5907.8	±	4.7	±	6.7	±	0.2	±	0.4	
	$\Gamma_{B_{J}(5840)^{0}}$	119.4	\pm	17.2	\pm	34.2					
	$m_{B_J(5960)^0}$	5993.6	\pm	6.4	\pm	5.1	\pm	0.2			
	$\Gamma_{B_{J}(5960)^{0}}$	55.9	±	6.6	±	9.4					
	$m_{B_J(5840)^+}$	5889.3	\pm	15.0	\pm	13.7	±	0.2	±	0.4	
	$\Gamma_{B_J(5840)^+}$	229.3	±	26.9	\pm	79.8					
	$m_{B_J(5960)}$ +	5966.4	±	4.5	\pm	2.5	±	0.2			
	$\Gamma_{B_J(5960)^+}$	60.8	\pm	14.0	\pm	17.2					
_											

Outline

➡ Detector and accelerator: LHCb at the LHC

Heavy baryon spectroscopy results :

- Observation of two new E⁻_b baryon resonances
 [LHCB-PAPER-2014-061; arXiv:1411.4849; PRL.114(2015) 062004]
- Precise measurements of the properties of the B₁(5721)^{0,+} and B₂*(5747)^{0,+} states and observation of B^{+,0} π^{-,+} mass structures
 [LHCB-PAPER-2014-067; arXiv:1502.02638, submitted to JHEP]

 First Observation of the B⁻->D⁺K⁻π⁻ decay and study of its Dalitz plot structure
 [LHCB-PAPER-2015-007; To be submitted to PRD]

Conclusions and outlook

Charm spectrum predicted

- Experimental results from Dalitz plot analyses [D*₀(2400)] and prompt production[D*₂(2460)] : discrepancies w.r.t. Theory
- Evidence for higher mass states, but not yet possible to assign quantum numbers->need amplitude analysis !

D^{**} Spectroscopy with $B^- \rightarrow D^+ K^- \pi^-$

$\Rightarrow B^- \rightarrow D^+ K^- \pi^-$ is an interesting mode to study D^{**} spectrum

- Decay previously unobserved -> first: measure branching fraction
- No resonances expected to decay to $D \cdot K^-$ or $K \pi^- >$ clean final state
- → Dalitz plot analysis of $B \rightarrow D^+K^-\pi^-$ can be very powerful !!
 - Clean and constrained method compared to inclusive production studies
 - Only states with natural spin-parity (J^p) can decay to D+π⁻ (D* 2400°,D* 2460° and higher mass states expected to contribute)
 - Amplitude analysis techniques give spin-parity information

Branching Fraction measurement

- Events pre-selected with loose requirements and refined with neural network [M. Feindt and U.Kerzel, Nucl. Instrum. Meth. A559 (2006) 190]
- → ~2000 $B^- \rightarrow D^+ K^- \pi^-$ candidate events (> 60 σ observation!)

LHCB-PAPER-2015-007

Dalitz Plot Fits

Dalitz Plot Analysis Results

- ▶ D^*_1 (2760)^o determined to have spin 1
 - Other hypotheses rejected with high significance
- Measured masses and widths of $D_2^*(2460)^0$ and $D_1^*(2760)^0$:

$m(D_2^*(2460)^0)$	=	$(2464.0 \pm 1.4 \pm 0.5 \pm 0.2) \mathrm{MeV}/c^2 ,$
$\Gamma(D_2^*(2460)^0)$	=	$(43.8 \pm 2.9 \pm 1.7 \pm 0.6) \mathrm{MeV},$
$m(D_1^*(2760)^0)$	=	$(2781 \pm 18 \pm 11 \pm 6) \mathrm{MeV}/c^2,$
$\Gamma(D_1^*(2760)^0)$	—	$(177 \pm 32 \pm 20 \pm 7) \mathrm{MeV},$

⇒ Measured product of branching fractions of resonances times $\mathcal{B}(B^- \to D^+ K^- \pi^-)$:

Resonance	Branching fraction $(x10^{-4})$
$D_0^*(2400)^0$	$6.6 \pm 2.1 \pm 0.5 \pm 1.5 \pm 0.4$
$D_2^*(2460)^0$	$25.2 \pm 1.2 \pm 0.7 \pm 1.1 \pm 1.7$
$D_1^*(2760)^0$	$3.9 \pm 1.0 \pm 0.3 \pm 0.7 \pm 0.3$
S-wave nonresonant	$30.1 \pm 5.9 \pm 1.2 \pm 8.6 \pm 2.0$
P-wave nonresonant	$18.9 \pm 4.4 \pm 1.6 \pm 2.9 \pm 1.3$
$D_v^* (2007)^0$	$6.0 \pm 1.8 \pm 1.0 \pm 1.2 \pm 0.4$
B_v^*	$2.9 \pm 1.5 \pm 0.7 \pm 1.3 \pm 0.2$
	stat. syst. model $\mathcal{B}(B^- \to D^+ K^- \pi^-)$

I HCB-PAPER-2015-007

model

Conclusions and Outlook

Several spectroscopy results produced by LHCb recently!

→ Shown today:

- Observation of new Ξ⁻ resonances [Phys. Rev. Lett. 114, 062004 (2015)]
- New B^{**} results from studies of $B^0\pi^+$ and $B^+\pi^-$ mass distributions
 - > First evidence of $B^*_2(5747)^0 \rightarrow B^{*+}\pi^-$ decay
 - > Masses and widths of $B_1(5721)$ and $B_2(5747)$ states measured
 - > Results for higher mass states depend on fit model used
- New D^{**} results from Dalitz plot analysis of $B^- \rightarrow D^+ K^- \pi^-$ decays
 - > First observation of $B^- \rightarrow D^+ K^- \pi^-$ decay
 - > $D_1^*(2760)^0$ determined to have spin 1
 - > Masses and widths of $D_2^*(2460)$ and $D_1^*(2760)^0$ measured
 - > Product branching fractions of resonances measured

➡ More soon !

LHCb

B** Systematic Uncertainties

Source (µ and Γ in MeV)	$B_1(5721)^0$		$B_{2}^{*}($	$B_J(5$	$(5840)^0$	$B_J(5960)^0$			
	μ	Γ	BF ratio	μ	Γ	μ	Γ	μ	Γ
Total statistical	0.72	1.52	0.14	0.37	1.01	4.95	16.70	2.88	7.71
Fit range (high)	0.33	1.30	0.06	0.08	0.37	2.20	2.90	0.52	0.26
Fit range (low)	0.04	0.11	0.01	0.02	0.39	0.04	8.22	0.69	2.83
2 MeV bins	0.02	0.14	0.00	0.04	0.07	1.09	0.50	0.08	1.00
Spline knots	0.11	0.01	0.02	0.02	0.26	1.75	0.04	0.45	1.44
Float AP	0.03	0.00	0.00	0.03	0.30	1.58	10.16	0.73	4.23
$B_2^*(5747)^0$ rel. eff., low p_T	0.56	0.91	0.15	0.08	0.16	0.07	0.23	0.00	0.18
$B_2^*(5747)^0$ rel. eff., mid p_T	0.64	1.01	0.05	0.09	0.18	0.08	0.26	0.00	0.16
$B_2^*(5747)^0$ rel. eff., high p_T	0.20	0.37	0.03	0.02	0.07	0.02	0.00	0.01	0.09
Eff. variation with Q value	0.13	0.33	0.02	0.04	0.07	0.45	2.46	0.19	0.70
Data-simulation reweighting	0.07	0.38	0.02	0.00	0.16	1.81	2.03	0.49	0.12
$B p_T ext{ cut}$	0.02	0.20	0.01	0.24	0.72	3.98	3.67	1.30	4.29
p_T binning	0.90	2.45	0.24	0.06	0.39	1.49	27.77	4.20	1.47
Fit bias	0.06	0.17	0.01	0.00	0.16	0.45	5.34	0.40	2.24
Spin	0.02	0.06	0.01	0.06	0.46	1.95	3.32	0.62	3.74
Effective radius	0.33	1.44	0.02	0.12	0.76	2.17	9.68	1.24	3.81
$B^* - B$ mass	0.10	0.11	0.03	0.02	0.11	0.04	0.17	0.00	0.09
$B_J(5840)^0 \ J^P$	0.01	0.04	0.00	0.01	0.01			1.67	0.76
$B_J(5960)^0 \ J^P$	0.01	0.20	0.00	0.00	0.16	0.18	8.00		
Extra state	0.00	0.26	0.00	0.04	0.34	1.67	0.99	0.12	2.08
Total systematic	1.36	3.49	0.30	0.33	1.48	6.68	34.24	5.10	9.41

Further studies

1) Angular analysis

The spin of the states investigated by studying the helicity angle θ $\Xi_{\rm b}^{*-} \rightarrow \Xi_{\rm b}^{0} \pi^{-}, \ \Xi_{\rm b}^{0} \rightarrow \Xi_{c}^{+} \pi^{-}$

$$J^P \to \frac{1}{2}^+ 0^-, \frac{1}{2}^+ \to \frac{1}{2}^+ 0^-$$

 \checkmark J = $\frac{1}{2}$ \rightarrow Flat θ distribution

 \checkmark J > $\frac{1}{2}$ \rightarrow 0 distribution depends on the initial polarization

Flat θ distributions observed for both states consistent with the Ξ_{b}' - and Ξ_{b}^{*-} interpretation

2) Measurements of relative productions

Actual Dalitz Plot

- ➡ DP=Dalitz Plot
- SDP = Squared Dalitz Plot

Distribution of $B^- \to D^+ K^- \pi^-$ candidates in the signal region over (a) the DP and (b) the SDP.