Heavy quark physics LaThuile 2015: XXIX Rencontres de Physique de la Vallee d'Aoste 1-7 March 2015, La Thuile (Italy)

Giacomo Fedia, on behalf of the CMS collaboration

March 3,2015

(日) (同) (日) (日)

The Compact Muon Solenoid detector

CMS Integrated Luminosity, pp, 2011, $\sqrt{s} = 7 \text{ TeV}$ Data included from 2011-03-13 17:00 to 2011-10-30 16:09 UTC

イロト イポト イヨト イヨト

Impact parameter resolution: 10 μ m @ 100 GeV and 20 μ m @ 10 GeV

stituto Nazionale

- Muon kinematics
- Dimuon kinematics and vertex probability
- Flight length significance and pointing angle

G. Fedi (INFN sezione di Pisa)

<ロト < 回 > < 回 > < 回 > < 回 >

Recent results on physics of beauty and charm quarks in proton-proton collisions at CMS:

- Search for physics beyond the standard model (by the mean of indirect evidence)
 - * Search for ${\rm B}_{
 m s,d}
 ightarrow \mu \mu$ decays at CMS
 - * CP-violating phase ϕ_s using ${
 m B_s}~
 ightarrow {
 m J}/\psi \phi(1020)$ channel
- Study of standard model of particle physics, test of QCD and particle properties
 - * ${
 m B^+}
 ightarrow \psi(2{
 m S})\phi{
 m K^+}$ rare decay
 - * B_c decays
 - * $\mathcal{B}(B_s \rightarrow J/\psi f_0(980))/\mathcal{B}(B_s \rightarrow J/\psi \phi(1020))$ ratio
 - * J/ ψ , ψ (2S), Υ (*nS*), and $\chi_{\textit{bn}}$ production

<ロ> (日) (日) (日) (日) (日)

Search for $B_{s,d} \rightarrow \mu \mu$ decays at CMS

・ロト ・回ト ・ヨト ・ヨト

G. Fedi (INFN sezione di Pisa)

- Highly suppressed decay in SM
 - $\circ~$ Forbidden ar tree level \rightarrow FCNC transitions only possible through penguin or box diagram
 - \circ Cabibbo $|V_{td}| < |V_{ts}|$ and helicity suppressed
- SM predictions
 - $\mathcal{B}(B_s \to \mu\mu) = (3.66 \pm 0.23) \cdot 10^{-9}$ (PRL112, 101801, 2014)
 - $\mathcal{B}(B_d \to \mu\mu) = (1.06 \pm 0.10) \cdot 10^{-10}$ (PRL112, 101801, 2014)
- Sensitivity to NP
 - 2HDM and m(H⁺)
 - MSSM $\tan \beta$
 - Leptoquarks
 - 4th generation top

< □ > < ^[] >

∃ ► < ∃</p>

- Selections:
 - BDT muon selection \rightarrow low muon fake rate
 - Selection done using a BDT with 12 input variables for B candidates
 - Trained with MC signals sample and with data sidebands
 - o Same BDT for $B^\pm\to J/\psi K^\pm$ normalisation and $B_s\to J/\psi\phi(1020)$ control channels
 - $\circ~$ No pile-dependence, no $\rm B_{s}~$ mass dependence
- BDT categories:
 - BDT response divided in multiple bins depending on data period 2012(4) or 2011(2)
 - Two further categories: barrel and endcap regions (different mass resolution)
- Unbinned ML fit with per-event resolution:
 - $\circ~$ Signal: fit of both $B_{\rm s}$ and B^0 shapes
 - Peaking backgrounds ($B^0 \rightarrow K\pi$, $B_s \rightarrow KK$)
 - Combinatorial and semileptonic BG

$$\mathcal{B}(B_{s} \to \mu\mu) = (3.0^{+0.9}_{-0.8}(stat.)^{+0.6}_{-0.4}(syst.)) \cdot 10^{-9} \quad S=4.3\sigma \text{ (Exp. 4.8)}$$

$$\mathcal{B}(B_{d} \to \mu\mu) < 1.1 \cdot 10^{-9} \text{ (95\% C.L.)}$$

- Data: 25 fb $^{-1}$ (CMS) and 3 fb $^{-1}$ (LHCb)
- Selection: BDT with 20 categories, 12 CMS categories which depend on \sqrt{s} , detector region, and BDT ranges + 8 LHCb categories which depend on BDT ranges
- Common parameters: hadronisation fraction f_d/f_s , B(B^{\pm} \rightarrow J/ ψ K^{\pm})
- Improvement of the CMS analysis: $\Lambda_b \rightarrow p\mu\nu$ branching ratio updated to the last prediction

$$\begin{split} \mathcal{B}(\mathrm{B_s} \to \mu\mu) = & (2.8^{+0.7}_{-0.6}) \cdot 10^{-9} \quad \mathrm{S}{=}6.2\sigma \ (\mathrm{Exp:}\ 7.4\sigma) \\ \mathcal{B}(\mathrm{B_d} \to \mu\mu) = & (3.9^{+1.6}_{-1.4}) \cdot 10^{-10} \quad \mathrm{S}{=}3.0\sigma \ (\mathrm{Exp:}\ 0.8\sigma) \end{split}$$

(日) (同) (日) (日)

CP-violating phase ϕ_s using $B_s \rightarrow J/\psi \phi(1020)$ channel

<ロ> (日) (日) (日) (日) (日)

- The B_s meson decays into a final state $J/\psi\phi(1020)$, which is a mixture of two CP eigenstates (odd/even);
- Interference between direct $B_s \rightarrow J/\psi\phi(1020)$ decay and decay via mixing gives rise to a CP violation phase $\phi_s \approx -2\beta_s = -0.0363^{+0.0016}_{-0.0015}$ rad (SM), where $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$;
- If the ϕ_s differs w.r.t. the SM prediction, then New Physics might contribute in the mixing box diagram.

- We measure the weak phase ϕ_s and the decay width difference $\Delta\Gamma_s$ by disentangling the two CP final states of the B_s with a tagged angular analysis;
- Opposite side lepton tagging is used to define the flavour at production time.

12 / 31

イロト イヨト イヨト イヨト

$$\frac{d^{4}\Gamma(B_{s}(t))}{d\Theta dt} = X(\Theta, \alpha, t) = \sum_{i=1}^{10} O_{i}(\alpha, t).g_{i}(\Theta),$$
$$O_{i}(\alpha, t) = N_{i}e^{-\Gamma_{s}t} \left[a_{i}\cosh(\frac{1}{2}\Delta\Gamma_{s}t) + b_{i}\sinh(\frac{1}{2}\Delta\Gamma_{s}t) + c_{i}\cos(\Delta m_{s}t) + d_{i}\sin(\Delta m_{s}t)\right]$$

- b_i and d_i depend on $\sin \phi_s$ and $\cos \phi_s$
- $\Delta\Gamma_s > 0$: we use previous LHCb results
- α physics parameters ($\Delta\Gamma_s$, ϕ_s , $c\tau$, $|A_0|^2$, $|A_5|^2$, $|A_{\perp}^2|$, δ_{\parallel} , $\delta_{S\perp}$, δ_{\perp})
- Averaged performance of the combined (μ and e) tagger: $\omega = 32.2 \pm 0.3\%$, $\epsilon_{tag} = 7.67 \pm 0.04\%$, $P_{tag} = 0.97 \pm 0.04\%$;

(日) (同) (日) (日)

${ m B_s}~ ightarrow { m J}/\psi \phi$ (1020) ϕ_{s} results [cms-pas-bph-13-012]

G. Fedi (INFN sezione di Pisa)

14 / 31

• Analysing the 2012 CMS data (20.0 fb^{-1}), we selected 49k B_s signal events. We obtain:

$$\phi_s = -0.03 \pm 0.11 \text{ (stat.)} \pm 0.03 \text{ (syst.) rad}$$

 $\Delta \Gamma_s = 0.096 \pm 0.014 \text{ (stat.)} \pm 0.007 \text{ (syst.) } ps^{-1}$

• Contour plot (stat. only), constraining $\Delta\Gamma_s > 0$:

${ m B}^+ ightarrow \psi(2{ m S})\phi{ m K}^+$ rare decay

G. Fedi (INFN sezione di Pisa)

${ m B^+} ightarrow \psi(2{ m S}) \phi { m K^+}$ rare decay [BPH-13-009 twiki]

• Resonand structure due to ${
m B}^+ o \psi(2{
m S})\phi{
m K}^+$ decay has been found

- About 144 events identify as signal
- Next step: branching fraction measurement

(日) (同) (日) (日)

$B_{c}\ensuremath{\mbox{decays}}$

G. Fedi (INFN sezione di Pisa)

${f B_c}$ decays [JHEP 01 (2015) 063]

The $B_c^{\pm} \rightarrow J/\psi \pi^{\pm}$ and $B_c^{\pm} \rightarrow J/\psi \pi^{\pm} \pi^{\pm} \pi^{\pm}$ decay modes are studied in CMS in the kinematic region where the transverse momentum of the B_c^{\pm} meson is greater than 15 GeV/c and within the central rapidity region |y| < 1.6.

$\begin{aligned} \frac{\mathcal{B}(\mathrm{B_s} \to \mathrm{J}/\psi \mathrm{f}_0(980))}{\mathcal{B}(\mathrm{B_s} \to \mathrm{J}/\psi \phi(1020))} \\ \text{ratio} \end{aligned}$

<ロ> (日) (日) (日) (日) (日)

G. Fedi (INFN sezione di Pisa)

- $N_{\rm obs}^{\rm f_0}{=}873$ and $N_{\rm obs}^{\phi}{=}8377$
- Consistent with predictions (PRD 79 (2009) 074024)
- Consistent with previous measurements

Systematics	Uncert.
Fit model	2.1%
f_0 mass window width	6.4%
MC simulation (f_0 natural width)	81.61%N
Decay model in MC generation	6.2% di Fisica Nacionali

${\rm J}/\psi$, $\psi({\rm 2S})$, $\Upsilon({\rm nS})$, and $\chi_{\it bn}$ production

- Double differential prompt J/ ψ and ψ (2S) cross section and rapidity integrated (|y| < 1.2) differential cross section (assuming umpolarised scenario)
- $\circ~$ 2011 data with extended $p_{\rm T}$ range up to 120 GeV (J/ $\psi)$ and 100 GeV ($\psi({\rm 2S}))$
- Acceptance measured for different polarisation scenario

$\Upsilon(1S,2S,3S)$ production (S-wave)[arXiv:1501.07750 Sub. to PLB]

- Differential prompt $\Upsilon(1S,2S,3S) {\rightarrow}~\mu\mu$ production as function of $p_{\rm T}$ in the rapidity range |y|<1.2
- $\circ\,$ NLO calculations from [Gong, et al.] extended by the authors to cover the range $p_{\rm T}<$ 100 GeV
- The measurements show a transition from an exponential to a power-law behavior at $p_{\rm T}\approx$ 20 GeV for the three Υ states

$\chi_{b1}(1\mathsf{P})$ and $\chi_{b2}(1\mathsf{P})$ production (P-wave)[arXiv:1409.5761 Sub. to PLB]

- $\circ~$ Use of converted photons to reconstruct $\Upsilon(1{\rm S}){+}\gamma$ final states in four bins
- Cross section ratio $\sigma(\chi_{b2})/\sigma(\chi_{b1})$ shows no evident $p_{\rm T}$ dependence
- Not completely in agreement with the NRQCD model predictions

- CMS take advantage of its performance in the reconstruction of high $p_{\rm T}$ muon to measure the cross section of charmonion and bottomium states at unprecedented $p_{\rm T}$ range
- $\circ\,$ Good muon reconstruction permits CMS to be competitive in the search for $B_s\to \mu\mu$ first observation
- \circ Rare decays of B_c and B^+ mesons are reconstructed and can be used in next analyses (e.g. cross section and lifetime measurement)
- $\circ\,$ CP-violating phase ϕ_s measurement can take advantage of $B_s \to J/\psi f_0(980)$ reconstruction

イロト 不得下 イヨト イヨト

Additional slides

G. Fedi (INFN sezione di Pisa)

(1)

INFN

イロト イヨト イヨト イヨト

- $\circ~f_0 \rightarrow \pi\pi$ invariant mass restricted to 50 MeV
- Assumption that $\pi\pi$ non-resonant component negligible component
- Assumption confirmed by PRD 89 029006
- Dedicated systematics:
 - $\circ\,$ varying the assumed width of the f_0 (50 MeV) in the MC simulation by $\pm 20\%$, which is within the 90% CL of our measured f_0 mass model
 - $\circ\,$ varying the $f_0(890)$ mass window up to ±100 MeV to account for possible backgrounds (basically $f_0(1500)$ and $f_2(1270))$

(日) (同) (日) (日)

${ m B_s} ightarrow { m J}/\psi \phi(1020) \ \phi_s$ signal model

We use the same notations as LHCb [arXiv:1304.2600]:

$$\frac{d^{4}\Gamma(B_{s}(t))}{d\Theta dt} = X(\Theta, \alpha, t) = \sum_{i=1}^{10} O_{i}(\alpha, t) \cdot g_{i}(\Theta),$$
$$O_{i}(\alpha, t) = N_{i}e^{-\Gamma_{s}t}\left[a_{i}\cosh(\frac{1}{2}\Delta\Gamma_{s}t) + b_{i}\sinh(\frac{1}{2}\Delta\Gamma_{s}t) + c_{i}\cos(\Delta m_{s}t) + d_{i}\sin(\Delta m_{s}t)\right]$$

<i>i</i>	$g_i(\theta_T, \psi_T, \phi_T)$	N _i	ai	bi	ci	di				
1	$2\cos^2\psi_T(1-\sin^2\theta_T\cos^2\phi_T)$	$ A_0(0) ^2$	1	D	С	-5				
2	$\sin^2\psi_T(1-\sin^2\theta_T\sin^2\phi_T)$	$ A_{ }(0) ^{2}$	1	D	С	-5				
3	$\sin^2\psi_T\sin^2\theta_T$	$ A_{\perp}(0) ^2$	1	- D	С	5				
4	$-\sin^2\psi_T\sin2 heta_T\sin\phi_T$	$ A_{ }(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_{\parallel})$	$S\cos(\delta_{\perp}-\delta_{\parallel})$	δ_{\parallel}) sin $(\delta_{\perp} - \delta_{\parallel})$ D cos (δ_{\perp})					
5	$\frac{1}{\sqrt{2}}$ sin $2\psi_T$ sin ² θ_T sin $2\phi_T$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$D\cos(\delta_{\parallel}-\delta_{0})$	$C\cos(\delta_{\parallel}-\delta_{0})$	$-S\cos(\delta_{\parallel}-\delta_{0})$				
6	$\frac{1}{\sqrt{2}}$ sin $2\psi_T$ sin $2\theta_T$ sin ϕ_T	$ A_0(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_{0})$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp} - \delta_0)$				
7	$\frac{2}{3}(1-\sin^2\theta_T\cos^2\phi_T)$	$ A_{S}(0) ^{2}$	1	-D	С	5				
8	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin^2\theta_T\sin 2\phi_T$	$ A_{S}(0)A_{\parallel}(0) $	$C\cos(\delta_{\parallel} - \delta_S)$	$S \sin(\delta_{\parallel} - \delta_S)$	$\cos(\delta_{\parallel} - \delta_S)$	$D\sin(\delta_{\parallel} - \delta_S)$				
9	$\frac{1}{3}\sqrt{6}\sin\psi_T\sin2\theta_T\cos\phi_T$	$ A_{S}(0)A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_S)$	$-D\sin(\delta_{\perp}-\delta_{S})$	$C\sin(\delta_{\perp}-\delta_{S})$	$S\sin(\delta_{\perp}-\delta_{S})$				
10	$\frac{4}{3}\sqrt{3}\cos\psi_{T}(1-\sin^{2}\theta_{T}\cos^{2}\phi_{T})$	$ A_{S}(0)A_{0}(0) $	$C\cos(\delta_0 - \delta_S)$	$S\sin(\delta_0 - \delta_S)$	$\cos(\delta_0 - \delta_S)$	$D\sin(\delta_0 - \delta_S)$				
	$C = \frac{1 - \lambda ^2}{1 - \lambda ^2}$, <i>S</i> =	$-\frac{2 \lambda \sin\phi_s}{1+\lambda+2}$,	$D = -\frac{2 \lambda }{\lambda}$	$\cos \phi_s$					
	$1 + \lambda ^2$		$1 + \lambda ^2$	1 +	$- \lambda ^2$					
$ \lambda $	λ includes possible contribution from CP violation in direct decay, we assume $ \lambda = 1$ and we assign a systematics INFN									

 $|\lambda|$ includes possible contribution from CP violation in direct decay, we assume $|\lambda| = 1$ and we assign a systematics. $\Delta\Gamma_{s} > 0$: we use previous LHCb results. α physics parameters $(\Delta\Gamma_{s}, \phi_{s}, c\tau, |A_{0}|^{2}, |A_{s}|^{2}, |A$

tituto Nazional

${ m B_s}~ ightarrow { m J}/\psi \phi$ (1020) ϕ_s systematics table

Source of uncertainty	$ A_0 ^2$	$ A_{S} ^{2}$	$ A_{\perp} ^2$	$\Delta\Gamma_s \ { m ps}^{-1}$	δ_{\parallel} rad	$\delta_{S\perp}$ rad	δ_{\perp} rad	$\phi_{\pmb{s}} ~ \mathrm{rad}$	$c\tau \ \mu m$
Statistical uncertainty	0.0058	0.016	0.0077	0.0138	0.092	0.24	0.36	0.109	3.0
Proper time efficiency	0.0015	-	0.0023	0.0057	-	-	-	0.002	1.0
Angular efficiency	0.0060	0.008	0.0104	0.0021	0.674	0.14	0.66	0.016	0.8
Model bias	0.0008	-	-	0.0012	0.025	0.03	-	0.015	0.4
Proper decay resolution	0.0009	-	0.0008	0.0021	0.004	-	0.02	0.006	2.9
BG mistag modelling	0.0021	-	0.0013	0.0018	0.074	1.10	0.02	0.002	0.7
Flavour tagging	-	-	-	-	-	-	0.02	0.005	-
PDF modelling assumpt.	0.0016	0.002	0.0021	0.0021	0.010	0.03	0.04	0.006	0.2
$ \lambda $ as a free parameter	0.0001	0.005	0.0001	0.0003	0.002	0.01	0.03	0.015	-
Kaon p_{T} re-weighting	0.0094	0.020	0.0041	0.0015	0.085	0.11	0.02	0.014	1.1
Total systematics	0.0116	0.022	0.0117	0.0073	0.685	1.12	0.66	0.032	3.5

- The systematic uncertainties from the proper decay time efficiency and the kaon p_T distribution originate from residual differences between data and simulation;
 - For the proper decay time efficiency, the statistical uncertainty of the efficiency model is propagated to the results
 - For the kaon p_T , the discrepancy between the data and the simulation is taken into account as a systematic uncertainty
- The model bias systematic comes from the biases of the observables obtained with toy pseudo-experiments of the fitted model;
- $\circ\,$ We left $|\lambda|$ as a free parameter to evaluate the effect of possible other contributions in the weak pha