Prospects for measuring $K^+ \rightarrow \pi^+ v \overline{v}$ decay at NA62 experiment

Viacheslav Duk, INFN Perugia For the NA62 collaboration

Les Rencontres de Physique de la Vallée d'Aoste March 01-07, 2015

Outlook

- 1. Motivation
- 2. NA62 experiment
- 3. Event selection
- 4. NA62 detectors
- 5. NA62 sensitivity
- 6. Conclusions

SM one-loop diagrams: box and penguins

2 modes: charged, neutral

- FCNC loop process
- Theoretically clean
- > CKM suppression: BR ~ $|V_{ts}^* V_{td}|^2$

Contributions to BR

- t-quark part (NLO QCD, 2-loop EW corrections): dominant
- c-quark part (NNLO QCD, NLO EW corrections): small
- LD correction
- Hadronic matrix element extracted from wellknown decay K⁺→e⁺vπ⁰

Uncertainties:

- Parametric (dominated by CKM, first error)
- Theoretical (dominated by LD corrections, second error)

 $BR(K^+ \rightarrow \pi^+ \nu \nu) = (7.81 \pm 0.75 \pm 0.29) \times 10^{-11}$ BR(K⁰ $\rightarrow \pi^0 \nu \nu$) = (2.43 ± 0.39 ± 0.06) × 10^{-11}

[Brod, Gorbahn, Stamou, Phys. Rev. D 83, 034030 (2011)]

$K \rightarrow \pi v v$ in New Physics

arXiv: 1012.3893

Searches for NP in $K \rightarrow \pi \nu \nu$:

- Complementary to LHC
- Several scenarios possible
- Measurements of charged and neutral mode will allow to discriminate between NP scenarios

Grey: ruled out SM: Standard Model SM4: SM with 4th generation RSc: custodial Randall-Sundrum LHT: littlest Higgs with T-parity MFV: minimal flavor violation

• V.Duk, INFN Perugia

La Thuile-2015, 04.03.2015 • 4

A. Buras et al

arXiv: 1408.0728

$K \rightarrow \pi v v$ in experimental physics

 K^+ → π^+ vv E787/E949 experiment @ BNL

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)

 $K^0 → π^0 vv$ E391 experiment @ KEK

 $BR(K_L \to \pi^0 \nu \bar{\nu}) < 2.6 \times 10^{-8}$

Phys. Rev. D 81, 072004 (2010)

NA62 goals

Main goal:

- Collect O(100) signal events in 2 years
- ► Measure BR(K⁺ $\rightarrow \pi^+ \nu \nu$) with 10% precision

Further goals:

- > Measure $|V_{td}|$ with ~10% accuracy
- > Probe several NP scenarios in $K^+ \rightarrow \pi^+ vv$
- > Probe NP in similar processes (e.g. $K^+ \rightarrow \pi^+ X$)

Beyond the baseline:

- LFV/LNV decays with 3 tracks in the final state
- Heavy neutrino searches
- \succ π^0 decays
- Dark photon searches (see talk by M. Raggi for details)

NA62 @ SPS CERN

2007-2011: R&D 2011-2014: construction & installation

2012: Technical run (partial layout)2014: Pilot physics run (full layout)2015-2018: physics runs

NA62 collaboration:

Birmingham, Bratislava, Bristol, Bucharest, CERN, JINR Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, IHEP Protvino, INR Moscow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Naples, Padua, Perugia, Pisa, Prague, Rome I, Rome II, San Luis Potosí, Sofia, Stanford, Turin

NA62 detector

NA62: kaon decays, decay-in-flight technique

From SPS to NA62:

- ✓ SPS primary beam: 400 GeV/c, ~1.1·10¹² protons/s on target
- ✓ Secondary hadron beam: 75 GeV/c, ~6% of K⁺
- ✓ ~4.8·10¹² kaon decays per year (~10MHz event rate downstream)
- ✓ ~10% signal efficiency
- ✓ ~50 signal events per year

Signal vs background

Main kinematical variable for the signal: $m_{miss}^2 = (P_K - P_{\pi})^2$

$$m_{miss}^{2} \cong m_{K}^{2} \left(1 - \frac{|P_{\pi}|}{|P_{K}|}\right) + m_{\pi}^{2} \left(1 - \frac{|P_{K}|}{|P_{\pi}|}\right) - |P_{K}||P_{\pi}|\theta_{\pi K}^{2}$$

Background:

- ➤ Kaon decays
- Accidental tracks in time with kaon tracks
- Beam-gas and upstream interactions

K ⁺ main decays	BR
$K^+ \to \mu^+ \nu$	0.6355
$K^+ \to \pi^+ \pi^0$	0.2066
$K^+ \to \pi^+ \pi^+ \pi^-$	0.0559
$K^+ \to \pi^+ \pi^0 \pi^0$	0.0176
$K^+ \to \pi^0 e^+ \nu$	0.0507
$K^+ \to \pi^0 \mu^+ \nu$	0.0335
$K^+ \to \pi^+\pi^- e^+ \nu$	4.257×10^{-5}

 P_{K}

Ρ

 $\theta_{\pi K}$

Event selection principles

Kaon detection

(track reconstruction, time, ID):

- K⁺ track reconstruction (Gigatracker)
- ➢ K⁺ time (Gigatracker, KTAG)
- \succ K/ π /p separation (KTAG)

Event reconstruction:

- ➢ 1 pion track
- \succ K- π track matching (fast timing)
- ➤ Cuts on m²_{miss} (Region I and II)
- \succ Cut on P_{π} : 15 < P_{π} < 35 GeV/c

(>40GeV missing energy)

background suppression:

- No signal in upstream veto (CHANTI)
- No signal in photon vetoes (LAV/IRC/SAC)
- No signal in muon vetoes (MUV)
 V.Duk, INFN Perugia

Pion detection

(track reconstruction, time, ID):

- > π^+ track reconstruction (Straw spectrometer)
- \succ π^+ time (RICH)
- > $\pi/\mu/e$ separation (RICH)

Trigger:

- > 1 secondary charged track
- No muons among decay products
- "pion-like" energy deposition in calorimeters
- Signal in CHOD

Gigatracker

Si pixel detectors:

- ➢ 60 mm x 30mm sensitive area
- Si pixel detectors 300 x 300 μm²
- 18000 pixels per station
- ➢ 10 readout chips
- > $X/X_0 < 0.5\%$ per station

Resolutions:

- Time: ~200ps per station
- > Direction: $dx/dz \sim dy/dz \sim 16\mu rad$
- > Momentum: dP/P < 0.4%

Beam profile (MC)

• V.Duk, INFN Perugia

3 stations and **4 achromat magnets** operating inside the beam pipe

2014: partial readout (1 chip per station)

KTAG

- Old: cerenkov counter CEDAR
- \triangleright N₂ or H₂ inside CEDAR
- New: external optics, PMs, front-end, readout
- > 8 PM stations

Performance:

- >95% K efficiency
- <1% pion mistagging</p>
- > Time resolution $\sigma_t < 100 \text{ps}$

KTAG illumination in 2014

Single PM time resolution in 2014

KTAG

La Thuile-2015, 04.03.2015 • 12

• V.Duk, INFN Perugia

Straw spectrometer

4 straw chambers in vacuum + spectrometer magnet

35m

Straw chamber:

- 4 views x 4 planes/view
- Mylar tubes: R=9.6mm, L=2.1m
- 112 mylar tubes per plane
- > X/X₀ ~0.1% per view

Performance:

- ➤ Spatial resolution < 130µm</p>
- Momentum resolution dp/p ~ 0.32% + 0.008%*p

Magnet:

≻ B ~ 0.36T

 $> p_T = 270 \text{ MeV/c}$

RICH

Detector:

- 17m long vessel filled with Ne at atmospheric pressure
- Array of 20 mirrors
- > 2 PM flanges
- ➢ 976 PMs per flange

Performance:

- \blacktriangleright µ mistagging < 1%
- ➢ Time resolution ~70ps

RICH vessel

RICH PM illumination in 2014

Reconstructed rings, 2014 run

• V.Duk, INFN Perugia

CHOD

CHOD vertical plane

Detector:

- ➢ 2 planes with scintillator slabs
- ➢ 64 slabs per plane
- > $X/X_0 \sim 5\%$ per plane

Performance:

impact point

Time resolution with

correction $\sigma_t < 400 \text{ps}$

CHOD time resolution in 2014

Photon veto: LAV/LKr/IRC/SAC LAV station LKr

LAV:

- \checkmark 12 stations in vacuum
- ✓ Cover 8.5 to 50 mrad
- ✓ OPAL lead glass read by PMs ✓ ~18.6 X₀

LKr:

- ✓ NA48/2 em calorimeter
- ✓ Cover 1 to 8.5 mrad
- ✓ ~27 X₀
- \checkmark γ detection inefficiency for E>10 GeV: $(1-\epsilon) < 8x10^{-6}$
- ✓ 100ps time resolution

IRC

SAC

IRC & SAC: ✓ Small angle calorimeters ✓ Cover <1 mrad

MUV

MUV1-2:

- Fe-scintillator calorimeter
- Hadronic/MIP cluster ID

MUV3:

- Scintillator tiles
- PM readout
- \succ Used in L₀ trigger

MUV3 illumination in 2014

La Thuile-2015, 04.03.2015 • 17

• V.Duk, INFN Perugia

NA62 sensitivity

Decay	event/year
K ⁺ →π ⁺ νν [SM] (flux 4.5×10^{12})	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ + other 3 tracks decays	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma(IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	negligible
Total background	< 10

Conclusions

□ The decay $K^+ \rightarrow \pi^+ \nu \nu$ provides unique opportunities for NP searches complementary to LHC

- □ The NA62 is aimed at measuring BR(K⁺ $\rightarrow \pi^+\nu\nu$) with ~10% precision by collecting O(100) events in two years of data taking
- Most detectors were successfully commissioned during the pilot run in 2014
- □ NA62 is ready to take data in 2015-2018

spares

Beyond the baseline

Decay	Physics	Present limit (90% C.L.) / Result	NA62
$\pi^+\mu^+e^-$	LFV	1.3×10^{-11}	0.7×10^{-12}
$\pi^+\mu^-e^+$	LFV	5.2×10^{-10}	0.7×10^{-12}
$\pi^-\mu^+e^+$	LNV	5.0×10^{-10}	0.7×10^{-12}
$\pi^- e^+ e^+$	LNV	6.4×10^{-10}	2×10^{-12}
$\pi^-\mu^+\mu^+$	LNV	1.1×10^{-9}	0.4×10^{-12}
$\mu^- \nu e^+ e^+$	LNV/LFV	2.0×10^{-8}	4×10^{-12}
$e^- \nu \mu^+ \mu^+$	LNV	No data	10 ⁻¹²
$\pi^+ X^0$	New Particle	$5.9 \times 10^{-11} m_{X^0} = 0$	10 ⁻¹²
$\pi^+\chi\chi$	New Particle	_	10 ⁻¹²
$\pi^+\pi^+e^-\nu$	$\Delta S \neq \Delta Q$	1.2×10^{-8}	10 ⁻¹¹
$\pi^+\pi^+\mu^-\nu$	$\Delta S \neq \Delta Q$	3.0×10^{-6}	10 ⁻¹¹
$\pi^+\gamma$	Angular Mom.	2.3×10^{-9}	10 ⁻¹²
$\mu^+ \nu_h, \nu_h \to \nu \gamma$	Heavy neutrino	Limits up to $m_{\nu_h} = 350 MeV$	
R _K	LU	$(2.488 \pm 0.010) \times 10^{-5}$	>×2 better
$\pi^+\gamma\gamma$	χPT	< 500 events	10 ⁵ events
$\pi^0\pi^0e^+\nu$	χPT	66000 events	O(10 ⁶)
$\pi^0\pi^0\mu^+\nu$	χPT	-	O(10 ⁵)

• V.Duk, INFN Perugia

NA62 TDAQ

